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PREFACE 

This work attempts a complete exposition of the modified Hansen’s theory 
developed by Dr. Peter Musen for analysis of the motion of an artificial satellite 
in the earth’s gravitational field. However, any exposition which lays claim 
to being complete is subject to severe criticisni, for the sheer mass of details 
that are involved can never be completely covered in a work of practical 
proportions. Nonetheless, it is the attempt of the author to provide a sys- 
tematic presentation which will begin a t  a relatively fundamental stage of 
celestial mechanics. I t  is hoped that in this manner, the exposition may be of 
value to those new to the field of orbit computation and to those whose concern 
is primarily machine programming, as well as to those more interested in this 
particular theory of general perturbations. 

w o d y  of this-work &as presented by the author in a series of lectures a t  
the Goddard Space Flight Center of the National Aeronautics and Space 
Administration in October, 1960. The questions and discussions which arose 
in the course of this lecture series were of value in determining what were the 
particularly troublesome concepts and techniques in the theory, and an attempt 
is made to deal with them thoroughly in this work. 

The raison d’etre of this exposition is the recently generated high degree 
of interest in artificial satellite orbit computation, and in the Hansen approach 
in particular. The theory has been in use in the computation of satellite 
orbits since Vanguard I (1958 p)  went into orbit in March, 1958, and is the 
basis of orbit predictions of the Goddard Space Flight Center. Despite the 
important role the theory has played to date, its working is not widely under- 
stood, and it is hoped that this exposition will lead to a greater understanding 
and use of the theory. 

The author, a t  the request of thc Data Systcms Division of the Goddard 
Space Flight Center, undertook a study of Musen’s development in order that 
an exposition of this type, beginning a t  a fairly basic level, might be made 
available to the growing number of those involved in satellite orbit computation. 

I t  is with thc deepest gratitude that the author acknowledges the invalu- 
able assistance and guidance offered him by Dr. Peter Musen, who gave freely 
and amiably of his time, in order to make clear the more subtle points of the 
theory. As well, the author wishes to  extend his deepest thanks to Mr. David 
Fisher of the Goddard Space Flight Center, a t  whose suggestion this work was 
undertaken, and whose direction, assistance, and moral support were instru- 
mental in achieving a finished product. In  addition, grateful acknowledgment 
is given to Dr. Alan Galbraith and Mr. Lloyd Carpenter for carefully reviewing 
the manuscript and rendering valuable suggestions. 
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COMPUTATION OF SATELLITE ORBITS BY THE HANSEN METHOD AS 
MODIFIED BY MUSEN 

by 
HOWARD T. PHELAN 

Goddard Space Fliqht Center 

SUMMARY / w 4 3 7  
A comprehensive description of the H a n w n  theory 

of satellite orbit calculation, as modi$ed by A h s e n ,  
is presented. The equations of the theory are devel- 
oped i n  sujicient detail to allow the reader to relate 
them to .fundamental laws ?f celestial mechanics. 
The physical and mathematical concepts underlying 
Hansen’s coordinate system and auxiliary ellipse 
are treated. The disturbing potential function and 
its derivatives are developed in the derivation of 
equations f o r  the perturbations in the orbit plane, a s  
well as the perturbations of the orbit plane. The 
method i s  described for  determination of the j inal  
position and velocity vectors of the real satellite and 
determination of the osculating elements. Finally, 
a brief evaluation of the theory i s  presented. 

INTRODUCTION 
This exposition presents a complete development 

of all the intitliematical relationsliips used in 
Musen’s theory of the motion of :m wtificid 
satellite in the gravitational field of the eiirth, a 
theory which is basically an application of Hiinsen’s 
luniir theory to an artificial satellite. Since 
Musen’s development is based upon Hansen’s 
c1:tssical work, an understanding of the latter is 
most important in comprehending Miisen’s work. 
However, Hansen’s theory does not tit d l  lend 
itself to an easy, clear, and simple exposition; 
quite the contrary is true. 

For the past 130 years, Htinsen’s theory has led 
to confusion and controversy in the world of 
celestial mechanics, and for the most part it h:is 
been avoided. The difficulty in understanding 
Hansen arises, as Ernest W. Brown (Reference 1) 
expressed it,  “partly on account of the sornew1i:it 
uncouth form in wliich it is givenin the Fundaments 
and partly on account of the very unusud w:iy 

in which tlie perturbations are expressed.” I n  
other words, Hansen’s techniques in solving lunar 
perturbations were extremely unorthodox, enough 
so that many of his contemporaries and successors 
violently disagreed with him. Nonetheless, the 
undeniable fact about Hansen’s luniir theory was 
that i t  worked, and with a high degree of accuracy. 
Here, i t  is necessary to inspect what are basically 
Hansen’s methods if we are to understand Musen’s 
final result. Though it  is inipossible in :I work of 
this length to cover all the details of Hansen’s 
theory, i t  is hoped t h t  by dealing with only the 
techniques incorporated in hlusen’s development, 
we will have a sufficiently clear and complete 
perspective on the theory as adapted to the 
motion of artificial satellites. 

In general, Hiinsen’s lunar theory had six 
distinguishing features: 

1. A fictitious, or auxiliary, ellipse is introduced 
and placed in the plane of the instantaneous 
orbit, i.e., the pliine containing the instsn- 
ttlneous radius iirid velocity vectors. This 
fictitious ellipse is of constant shape, and its 
perigee moves in a specific manner. 

2. The angular perturbibtions in tlie plane of 
the orbit are added to the nieiin anomaly of 
the fictitious ellipse. 

3. The radial perturbations are expressed as a 
ratio between the radial distance of the real 
satellite and that of the fictitious satellite. 

4. The longitudes are measured from a ‘lDepar- 
ture Point” in the plane of the orbit. 

5 .  One function, W, is found which expresses 
all the perturbations in the orbit plane. 

6. The theory is a generd one wliicli liiindles 
luntir perturbibtioris of $111 kinds. 

Eiicli of t h e  six features is to be found in the 
Xlusen development. Only four changes tire made 

P 
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by Musen in his development, but each is ingenious 
and very significant. 

1. Musen has used the eccentric anonialy of 
the fictitious satellite as the independent 
vtirithle instead of time. He has developed 
all his Fourier series expressions in ternis of it, 
whereas Himsen’s Fourier series were de- 
veloped in terms of mean anomaly. The 
ideii of using the eccentric anoiiialy was 
borrowed from Hansen’s planetary theory. 

2. The method of iteration is used in developing 
the find series forms, replacing Hansen’s 
method of development into Maclaurin 
series. This chitiige was made desirable by 
the existence of fast computing machines 
which handle iterations rapidly. 

3. Parameters designated by the symbol A are 
introduced. These parameters, which deter- 
mine the perturbations of tlie orbit plme, 
allow tlie introduction of a rotation matrix, 
an ingenioils development leading directly 
and simply to tlie final position vector. 

4. The rotation matrix is introduced in place of 
Hansen’s development in polar coordinates, 
obviating much of the cumbersome calcula- 
tion required by Hansen. 

So in the final form of Illusen’s development, 
the basic idea consists of introduction of it fictitious 
auxiliary satellite which describes an iiuxiliitry 
rotating ellipse of constant shape and moves in this 
ellipse in accordance with Kepler’s laws. The 
position of the reid satellite is determined by its 
deviations in time, as well as in space, from the 
position of this auxiliary satellite. The perturba- 
tions in the orbit pl:me are re1:ttively large com- 
pared to those of the orbit plane, and are separated 
from the latter. They are then determined by 
the single function W for which a differential 
equation of the first order is formed. The per- 
turbations of the orbit plane are determined by 
four interdependent parameters, the X parameters. 

I t  should be noted here that the sixth dis- 
tinguishing feature of Hansen’s method, given 
above, has significance in the artificial satellite 
theory. Hansen’s method allows inclusion of all 
perturbing forces on the moon. Clearly, the 
forces which disturb the motion of artificial 
satellites can be more numerous and more complex 
than those which disturb the motion of the moon. 
Nonetheless, Musen’s modified Hansen theory 

They are as follows: 
allows easy inclusion of such forces as those due 
to the gravitational attraction of the sun and the 
moon, solrir rndintion pressure, tlie ellipticity of 
the earth’s yu:itnr, and the motion of the earth’s 
water masses. I t  is not inconceivable that even 
the force of atmospheric drag can be included in 
the theory. However, this effect, which is the 
most troublesonie and difficult force to deal with 
in artificial satellite theories, is not yet sufficiently 
understood to allow its easy inclusion in the 
disturbing function. 

The theory as developed by Musen is of unique 
and primary Significance because it is exact for all 
orders of perturbations. This renders i t  most 
valuable for the accurate determination of long 
period effects, and allows long term predictions. 
However, it should be noted that for low altitude 
satellites (on which the drag effects are con- 
siderably lnrger than other perturbing effects) 
tlie theory gives, for practical piirposes, orbit 
predictions good for approximately two weeks’ 
time. 

Musen has recently completed a modification of 
his development (Reference 2) which circumvents 
some of its more troublesome aspects. However, 
the basic approach is exactly that which is de- 
scribed here. The major difference is thiit the 
perturbations are developed by using the true 
longitude rather than tlie eccentric ttnoniiily as 
the independent variable. The new technique 
avoids the necessity of “starring” and lLbarring” 
the potcntial function in the developinerit of the 
basic perturbation function W. I t  also allows 
polynomial representation in most places where 
the present development uses infinite series. 
Much of the problem of machine truncation error 
is thus eliminated. The new inodification is 
also limited to only those eccentricities for which 
Kepler’s equation can be readily solved. Until 
some replacement of Kepler’s equation is found for 
large eccentricities, this limitation will exist. 
The techniques used in the new modification for 
developing the perturbations and finding the 
constants of integration are exactly those described 
here, and the machine program is roughly equiva- 
lent to the existing one. 

The notation in the following exposition is, 
where possible, the same ~ L S  that  used in Brown’s 
discussion of Hansen’s Lunar Theory (Reference 
l),  which was biised upon Hansen’s notation in the 
Darlegung (Reference 3).  
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SECTION I 
BASIC NOTATION AND FUNDAMENTAL EQUATIONS OF CLASSICAL 

CELESTIAL MECHANICS 

DISCUSSION 

Before an attempt is made to dissect the Musen 
theory, it is necessary to become familiar with the 
basic expressions which occur in it, as well as the 
notation used. This section lists the notation used 
and then gives the derivations of five equations 
common in classical celestial mechanics, which are 
used in the Musen development. Two of these 
equations apply only in an “ideal” coordinate sys- 
tem (defined as a coordinate system which rotates, 
but so that the form of the equations of motion 
of a satellite is invariant). This is a very impor- 
tant consequence, and one upon which Hansen 
relies. Hansen’s particular “ideal” rotating coor- 
dinate system is an orthogonal one in which the 
X and Y axes are allowed no rotation about the 2 
axis (see Figure 1 which is explained in greater 
detail in Section 11). 

The basic ellipse equations found in this section 
are derived in Appendix A, as are the equations 
of motion in polar form. We start our develop- 
ment with the classical two-body problem, and 
since much of Musen’s development is a vectorial 
one, let us begin here by listing all the vectors 
and angles which will occur. We assume an or- 
thogonal, xyz, inertial coordinate system whose 
origin is at  the center of the earth, which in the 
first approximation we will assume to be spherical 
and homogeneous. The xy plane is the earth’s 
equatorial plane, and the z axis has the positive 
direction of the axis of rotation. In  the absence of 
disturbing forces, a satellite of negligible Inass has 
as its equation of motion 

r 
r3 

r=--, 

where 
r=xi -$- yj + zk 

is the position vector of the satellite, T is its magni- 
tude, and i, j, k are unit vectors along the x, y, z 
axes respectively. The velocity vector is 

. a x .  dy dz r=-I+-j+-k d t  dt dt ’ 
and the acceleration vector is 

d2x d2y d2z 
dt2 dt2 dt2 * 

i=- i+- ‘f- k 

In this system of equations, the equations of 
motion have been nondimensionalized by choos- 
ing as a unit of length the earth’s mean equatorial 
radius, and as the unit of time the square root of 
the ratio of the radius to the Newtonian accelera- 
tion a t  a distance of one radius from a point mass 
(having the earth’s mass). 

The satellite’s orbit is assumed to be an ellipse. 
The following notation will be used, and is identi- 
cal to the notation used throughout Musen’s de- 

(See Section X.) 

velopmen t : 
E,=a=semimajor axis of ellipse, 
E2=e=eccentricity, 
E3= W =  argument of perigee as meas- 

ured from the ascending 
node, 

E,=B=longitude of the ascending 
node in the equatorial sys- 
tem, 

Es=i=inclination of the orbit plane 
to the equatorial plane, 

EG=go=mean anomaly a t  the epoch 
(i.e., at  time t=to), 

n = v G ~ - ~ / ~ = m e a n  motion (in Vanguard 
units, where standard 
P = U ,  

g=go+n(t- to) =mean anomaly, 
E=eccentric anomaly, 
j= true anomaly, 

P=Pzi+P,j+Pzk=unit  vector directed from 

R=R,i+R,j+R,k=unit vector normal to orbit 
origin to perigee, 

plane, 
Q = R X P  
rO=unit vector in direction of r, 
nO=unit vector normal to r, 

In the two-body problem, the elements 
E,(i=l, 2 , .  . ., 6) are the constants of integration, 
and the complete solution is given by the following 
set of classical equations (Reference 4, p. 164): 

lying in the orbit plane. 

E-e sin E=g, (2) 

T cosf=a(cos E-e), (3) 

r sin f = u d m  sin E, (4) 
a( 1 -e2> r=u(l-e  cosE)=---. l + e  cosf ( 5 )  
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x, y, z 3 sets of 
X, Y, Z 1 orthogonnl 
in, t i ,  Z a x w .  

Referenve plane xy 
Osculating plane X Y  

I1 

Y 

X 8 = angle YIN 

(7 = angle Xn1 
i = angle I)etu.eeti planc~i  
f = angle O h  

w = angle IllOI’ 

v = angle X r  

FIGURE 1.-The coordinate systems of Hansen’s theory. 
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Equation 2 is Kepler’s classical equation relating 
the eccentric anomaly to the mean anomaly. 
Equations 3, 4, and 5 are the standard ellipse 
equations and are derived in Appendix A. The 
final equations necessary to the complete solution 
are those of the rotation matrix and the position 
and velocity vectors: 

‘cose -sin e 0 

sin e cos e 
- 0  0 

0 cos w -sin w 0 

-sir1 i ]  [ s r  w c; w :],(61 

cos i 

r=Pa(cos E-e) + Q u % ‘ m  sin E, (7) 

* 1  r=-  (Qa1/1-4‘cos E-Pus inE) .  (8) 

The first and third inittrices on the right-hnnd side 
of Eqiuition 6 each describes a rotation about the 
z axis. The second matrix describes a rotation 
about the J: axis. 

In the two-body problem, the components of the 
position and velocity vectors a t  the initial time 
t=to can be taken as the constants of integration, 
and the elements can be determined froni them by 
means of the above set of equations. The two- 
body problem, however, yields onlj- 2~ first ap- 
proxini:ition to  the motion of a planet or n satellite. 
The presence of some disturbing force F c:iuses 
deviatioiis froin the simple motion of the two- 
body problem, and gives rise to v:iri:itions in the 
elements of the orbit. Tlius, we niust find a waj- 
to deal with these v;iriations. The c1:issic:d con- 
cept of osciilnting elements was introduced us a 
device to facilitate the hmdling of this vuri. <I t’ ion. 
The oscultrting, or instantaneous, elements of the 
orbit are the elements which would be found :it any 
given iristiirit if a t  that instant the planet or 
satellite were assumed to be traveling in a perfect 
ellipse and in a stationary plane. 

In  intithematical terms, the oscu1:Lting ele- 
ments are defined in s~irh n way that  if the position 
and velocity vectors of the orbiting body are 
given tis functions of the six elements tirid titlie, 

q’ t i  

i=g(&, Ez, . . ., EB, t )  
r=.f(G, E,, . . 

673-619-64---2 

then the following relations must hold: 

and 

where 

is culled “Brown’s operator.” (See Reference 4, 
pp. 374-375.) This is a result of the Method of 
Variation of Parameters, a mathematical tech- 
nique commonly used in celestial mechanics; it is 
not a result of deductive reasoning, but rather an 
educated guess as to the form of the general solu- 
tion to the problem. (See Reference 5, pp. 
466-473.) Two consequences of defining the 
osculating elements in this fashion are 

(12) 

relations which appear throughout the develop- 
ment of certain derivtitives of the elements. 

Now that we h:Lve introduced R disturbing 
force F which produces variations in the elements, 
we must try to form expressions for these varia- 
tions. To do this it is most convenient to work 
with the disturbing potential fi rather than its 
gradient, the force. We assume that F has the 
form 

m afi a s  
bx by da 

F=grad a=- i t -  j+- k, (13) 

which is a convenient form for the development 
that follows. 

In  Musen’s developrtient, we require expressions 
€or the time rate of chmge of the angle of inclina- 
tion i ,  the time rate of change of the right ascension 
of the node 8, and the periodic part of the time 
rate of change of the argument of perigee 9. We 
want these expressions in terms of components of 
the force function. In this development, we will 
introduce the X Y Z  coordinate system where A’, 
Y ,  arid Z are orthogonal axes, the X axis and Y 
axis lying in the orbit plane, and the Z axis being 
normal to it. Our tibteiript is to obtain the expres- 
sions in terms of the gradients of the potential 
function along the X ,  Y ,  or Z axis. By using a 
vectorial development, we can readily find the 
desired form of these expressions. 
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di 
DERIVATlON OF - 

dt 

In  t8he two-body problem, in which we let X 
and Y be orthogonal axes in the plane of the orbit, 
and Z the axis normal to the orbit, we have 

.. - r 
‘=7 

since the force is an inverse square force in the 
direction of the unit vector ro, where ro=r/r. 

If we operate on Equation 14 by r X ,  we get 

13Xr=0; r 

so, integrating rXr=O, we have 

rXr=c, 

where c is the vector constant oflintegration. 
But from the sketch 

we see that IrXr/ is twice the urea swept out per 
unit time. Also, the direction of (rXr) is pcrpen- 
dicular to the plane containing r and dr; so if we 
call the unit normal to this plnne R, we see that 

R 
c==hl 

where l /h is twice the area swept out per unit 
time; and from Kepler’s law, 

1 
h=4qi=7j; 

so we have 
. R  rXr=%=c. (16) 

Now, again taking Equation 14 and operating 
with R x , we have 

But we see from Equation 16 that R=h(rXr); SO 

h r 
=--(r r2 X .) X; 

=$ [(r. F) i-(r.i) 

However, we can write 

where drldt and rdvldt are the components of i 
along the radius vector and perpendicular to it, 
respectively. It is important here to keep in 
mind that the magnitude of r is not equal to that 
of drldt, but rather 

So, writing r in terms of its components, as tbbove, 
we have 

because 

r . @=o r is pcrpcnclicular to drol - d t  
d t  [ 

and 
r .  rO=r. 

We should again avoid confusion by remember- 
ing that in our notation, 

the radius vector is r, the velocity vector is i, 
and the unit vector along r is ro. Clearly, t,oo, 
i. is t,angent to the path. That is, drO/dt is per- 
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pendicular to the radius vector, whereas I is not.. 
So, we have from Equation 18 

r h  h d r  RX-=- T i - -  r - 
r3 r2 r2 dt 

h h dr -_ f-- 
r r"Z' - 

But we notice that 

h dr h dr 
r dt r2 dt' -_ ___  - 

Therefore. 
r dro 
r3 d t  RX--=h - 

and we can write Equation 17 in the form 

Integrating Equation 19 and knowing that 

where R = O  we have 

where q is a constnnt of integration. 

integral, we have a closed vector triangle 
Now, with Equation 20, known as the Laplacian 

with hro, (RX r),  and the constant vector q. To 
find the direction of q it is convenient to use the 
following sketch : 

0 I 

Taking the case where r is in the direction of P, the 
perigee (by definition, the point closest to the 
origin), we see the path is perpendicular to the 
line OP a t  the point 1'. Since the velocity vector r 
is always tangent to the path, in this case r must 
be perpendicular to OP, and, therefore, perpen- 
dicular to the vector r lying along OP. Then, if 
r is perpendicular to r, the vector (RX r) must lie 
along r, directed inward toward the origin. So, in 
the case where r is along OP, we have both the 
(RXr) and hro vectors lying along the stime line. 
Therefore, in order for the Laplacian integral to 
hold true, q must also lie along the line OP and 
we can write it 

q= heP, 

in all cases, where P is the unit vector along OP. 
From this it can be shown that e is the eccentricity 
of the ellipse. Now, we know that c=l /h  (and is 
therefore a function of the elements a arid e )  ; and 

c=cR=- R and q=heP. 1 
h 

In applying Brown's operator, 

we know that 6jdt applied to any element is equiva- 
lent to the total derivative. So from Equation 16 

6 6  - c=- ( rXr) ,  dt dt 

but we know from Equations 10 and 11, 

6 r-0 
and 

6 .  r=F,  
so we have 

$ - = r X F .  
Now. 

-=-- dc d(cR) de dR d t  dt -R -+e dt -=rXF. d t  

Multiplying through by RX and h, we have 

h (RX R 2) + h ( R X  c $)=hR X (r X F) ; (23) 
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but c = l / h ,  and RXR=O, so 

dR 
dt RX-=hRX (r XF)  

=h(R. F)r--h(R. r)F, 

and since R e  r=O, 

Rx--=h(R.  dR F)r. 
dt 

However, R .  F is simply the projecttion of the force 
on the Z axis, i.e., the component normal to the 
plane. Therefore, 

and 
dR bn RX-=h - r. at bZ 

Since R is a unit vector, tZR/dt allows only the 
rotation of the  osc~lz~ting plane tibout the r vector, 
since r is perpendicular to R by definition. The 
instantaneous angular velocity of rotation of the 
osculating plane, about r, we shall designate as 
$, a vector clearly in the direction of r. Clearly 
then, 

and we can write 
ba RX($XH)=h bZ r.  

Theref ore, 

ba 
bZ ( R .  R)+(R,$)R=h -r. 

But,  R .  R= 1 and R.$=O since $ is in the direction 
of r ,  so 

This gives $, the rotation of the orbit plane with 
the plane considered to be a rigid body. How- 
ever, if we have an ellipse in the osculating plane, 
it is allowed another motion, a rotation in the 
plane, if we disregard changes in the shape of the 
ellipse. If we consider the angle T between the x 
axis and the line from origin to perigee, then the 
rotation of the ellipse about R normal to the plane 
of the ellipse is clearly (d~/dt)R. Therefore, the 
total motion of the ellipse is given by the rotation 

of the plane in space plus the rotation of the ellipse 
in the plane, and is 

bO dlr h - r+- R. bZ dt 

Considering Figure 2, we can attach three unit 
vectors to the osculating plane: m is the direction 
of the node; K is perpendicular to m and to the 
reference plane; R is perpendicular to the osculat- 
ing plane and to m. Using these three unit vectors, 
we can resolve the total rotation of the ellipse into 
three motions: 

I. the rotation about m, which is di ldt ,  
2. the rotation about K, which is d8/dt, 
3 .  the rotation about R, which is dwldt. 

The sum of the three rotation vectors must equal 
the total rotational motion of the ellipse: 

(26) 
bQ d.rr d i  (18 dw h-r+-  R=-mmf - K + - R .  bZ d t  dt d t  d t  

Multiplying Equation 26 through by m., we get 

bQ (llr h -  bZ ( m . r ) + - ( m . R )  d t  

But, m .  m = l ,  m .  K=O, arid m . R=O; also, m a r  
=Im/lr( cos ( j + w ) = ~  cos (v-u). (See Figure 2.) 
Therefore, we have a final explicit expression for 
the first derivative ot' the angle of inclination: 

an di hr - az cos (v-u)=-. d t  

de DERIVATION OF zt 

Multiplying Equation 26 through by . (mX R) 
we get 

(29) 

But  (mXR) is clearly perpendicular both to R 
and to m, so both R . (mXR) and m . (mXR) will 
simply equal 0, and we have 
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X 

FIGURE 2.--Rotatioii of the ellipse. 

Now, K . ( m X R ) = m  . (RXK).  And since R arid 
K are unit vectors, R X K =  - (KXR)= - (siri i )m 
(see Figure 2) ,  so 

set of orthogonal axes d ,  y’, z’ along which lie the 
unit vectors i’, j’, arid 1’ respectively. Placing 
these axes so that the unit vector m falls along x’, 
arid R falls dong z’, we can write: bf2 

h - bZ r . (mXR)=-$ siri i. (31) 

To write the triple product r . (mXR) as a. sctilar 
r=i’ cos (c-u)i’+i. sin (u-u)j’, 

m=i’. 
function of T ,  v, and u, we can temporarily insert a R=l’. 
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r .  (mXR)= 

r cos (0-a) T sin (v-u) 0 

1 0 0 

0 0 1 

- - --T sin (0-a), 

and finally, 

bn de 
bZ d t  h - [ - T  sin (0-a)]=-- sin i 

or 
de bfi - sin i=hr - sin (v-a). dt bZ 

DERIVATION OF 2 
We have from Equation 22 

dC -=rXF. 
t l  t 

But c=cR, SO 

dR @ R+c -=rXF. 
dt d t  

(32) 

(33) 

Multiplying Equation 33 through by - R, we get 

ac dR 
- R .  R+c --.R=(rXF). R=R.  (rXF). d t dt 

But R . R = l  and d R / d t .  R=O since R is a unit vec- 
tor arid dRldt must be perpendicular to it. Thus, 

@=R . (rX F). 
d t  (34) 

Then, since 

we have 

e = - h 2 R .  d t  (rXF). (35) 

Now, if we take the Laplacian Integral 

dr 
d t  

RX-+hro+q=O (Equation 20) 

and apply Brown’s operator to it, we have 

6 dr 6 dr 6h 6r0 6q -RX-+RX- -+ro -+h -+-=O. (36) 
d t  dt d t  dt  d t  dt  d t  

But, we know that in an ideal system 

6 - R=O, d t  (37) 

because R, a unit vector always normal to the X Y  
plane, does not depend upon the elements, and 
Brown’s operator gives the dependence of a func- 
tion upon the oscultiting eIements. We know, also, 
that since the X Y  plane is a l ~ i l y s  the plane of the 
orbit, containing both the position and velocity 
vectors, there can be no component of the disturb- 
ing force normal to the X Y  plane ; if there were, the 
orbiting body would move out of the plane. Thus, 
if we write the force 

bn 
bZ F= (F) + - k ’ , 

where 

with i’, j’, k’ unit vectors along X ,  Y ,  and 2, re- 
spectively, we see that F= (F) because bfijb2 does 
not appear explicitly in an ideal system. So, 
Equation 11 can be written: 

Further, because h and q are functions of the 
elements alone, we have 

and, as a consequence of Equation 10, 

6ro -=0. d t  

(39) 

Substitution of Equations 37 through 40 into 
Equation 36 yields: 

dh dq 
dt d t  R X  (F)+ro -+-=o, 

where we have from Equation 35 

Now, considering the unit vector no which lies 
in the orbit plane and is perpendicular to r, we 
know that no= (RXrO) and that (RXr)=mo 
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which we put into Equation 42. 
thus becomes: 

Equation 41 

(43) 4 RX(F)-roh2rF. no+-=@ d t  

If we write ( F )  in terms of its coniponents in 
polar form, along the radius and normal to the 
radius, where ZI is the polar angle, we have 

bQ 1 bQ F=-  ro+- - no. br r bv 

Putting t.his into the first term of Equation 43 
gives: 

bQ 1 bQ dq 
- (RXro)+-  - (RXno)-h2r(F.no)ro+-=0, br r bv d t  

(44) 

and since (RXro)  =no and (RXno)=-ro, we write 

bQ 1 bQ 
- br no-(; &+h2r(F.nO) 

But F = ( F ) ,  and thus 

bQ 1 bQ 
br r bv 

( F .  no)=- ro. no+- - no. no 

or 

1 bQ ( F .  no)=- - 
r bv’ 

since no. no= 1 and t o .  no=O. 
45 becomes 

Therefore, Equation 

or 

In  the inertid coordinate system, the rotational 
term w X q would have to be added to this expres- 
sion. 

At this point, we should recall that q is a vector 
directed from the origin to the perigee, and is 
given by 

q=heP, 

where P is the unit vector in the direction of the 
perigee. From the sketch 

Y 

where x is the argument of perigee as measured 
from the departure point X d ,  and i‘ and j r  are 
unit vectors along X and Y,  respectively, we see 
that 

P=i’ cos x+j’sin x 
and 

q=he(i’ cos x+j’ sin x). (47) 

Using this last expression for q and the final form 
of dqldt, we could readily derive the classical 
equations for dldt(he cos X) and d/dt(he sin x). 
However, these are not used in the Alusen devel- 
opment. 

We now have formed three of the fundamental 
equations of celestial mechanics which are used in 
Musen’s development. They are: 

d i  bQ -=hr - cos (c -u) ,  dt bZ 

.de m . 
dt bZ sin z -=hr sin (v-a), 

3 = ( r o x R )  -+to  bQ 
at br 

1 

I n  addition to these, we will require two relation- 
ships which are classical results; however, they 
are valid only in the ideal coordinate system such 
as the one Hansen devised. 

da de PROOF THAT -E-  COS^ IN THE IDEAL SYSTEM dt d t  

It is apparent from Figure 1 tliut we can divide 
the rotational niotion of the orthogond X Y Z  
system into the rotation components along three 
axes: the z axis norniiil to the reference plane, the 
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Z axis n o r i d  to  the osculnting X Y  plane, and the 
m axis along the line of intersection of the two 
planes. 

If we examine the motion of the X iixis, we see 
i t  has tt rotation component about z which is 
d0ldt. Siiniltirly it has a rotation component about 
Z which is-daldt, and one about m which is dildt. 
Therefore, if we let z0, Zo, and m0 be unit vectors 
dong z, 2, and m respectively, we can write the 
total rottitioil velocity of the X axis, w ,  as 

d0 do  d i  
a=- 20-- ZO+- mo; dt dt dt 

but, 
a0 d0 
dt dt 

zo -=- (ZO cos i+no sin i), 

(49) 

where nO=ZoXrno, that  is, no is a unit vector in 
the direction of n, which is norniul to m and in 
the X Y  plane. Note that 2 is perpendicular to n 
and that 2, z, and n are all in the siime plane; thus 
we can write 

This gives the rotational velocity o l  the X axis in 
ternis of three orthogonal components. Now, the 
definition of tin ideal system is that  the X tind Y 
mes have no rotiition about the Z axis. Tliere- 
fore, we niust have 

rl0 . da 
 COS 2--=0 
clt dt 

or 
I 

L l  

This (~onc~lusion can also bc reached geoiiietrically : 

z 

I n  our ideal systein, we allow rotation of the X Y  
plane only about the radius vector r, in which 
case the plane, in some time dt, will be displaced 
to the dotted line. The departure point will be 
displaced to k d ,  and the line between x, and g d  

will be perpendicular to both the X Y  plane and 
the displaced XYplane. Thus, a will be increased 
by da, and 0 by de. And we will hzive the right 
triangle a d a  

in which da= (de) cos i. Therefore, since i+di-i 
as di+O, we see that  

I' 
It is clearly evident that  in a non-ideal sj~steni, 

this condition cannot hold, for in such a system, 
0 could be held constmt (see Figure 1) and the X 
and Y axes could be rotated about the Z axis. 
In  this ciise, de/&-0, but da/dt#O, so 

da de -#-cos  i. d t  dt 
an an PROOF THAT IN THE IDEAL SYSTEM r Fz='k cos i 

Iniismuch as the disturbing function Q to be 
used is composed of the zond harmonics of the 
eiirth's gravitationd field (see Equation 771, is 
symmetric with respect to the enrth's usis (2 
axis). Thus, 

Q= Q(r,  +') ) 

where 4' is the geoceiitric latitude. 
" 

X 
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If qo is the unit vector normal to r and in the 
direction of increasing + r ,  afL/aZ will be given by 
the projection of 

where ZO and qo are each perpendicular to r and 
the vectors qo, zo, and r are coplanar, the angle 

between qo and Zo is given by 
1 an ; a j  qo 

cos i cos p=-* cos r#Jr on the Z axis. 
Q is in the direction of r which is perpendicular to 
the 2 axis and therefore nitikes no contribution 
to dnjbz. 

The other coinporient of gradient 
H ~ ~ ~ ~ ,  

an cos i aL-2 Now we can write 

cos p, an 1 an 
a2 r d#lr 
-=- - 

where p is the angle between qo and the 2 axis. or, if we let +=sin + r ,  then 
From the spherical triangle determined by Zo, 

zo, und qo cl+=cos 

and 

SECTION I1 

HANSEN'S COORDINATE SYSTEM AND THE AUXILIARY ELLIPSE 

GENERAL OUTLINE OF THE PROCEDURE 

111 this section, the rotating coordinate system 
and the auxiliary ellipse will be introduced and 
discussed. At this point it seems advisable to 
discuss the entire problem and method of solution 
in order that tlie entire procedure be put into 
focus. The purpose of a theory such as hlusen's 
is to tillow analysis of the effect of forces on an 
artificitil satellite and, from them, predict the 
motion and the behavior of the satellite in orbit. 
In  this development, only tlie zonal harmonics 
of the etirtli's gravitational potential are taken 
into account, though other forces could be con- 
sidered tis well. We want to be able to predict 
the positioii of a satellite moving in tliis gmvita- 
tioiial field, once we have established by observa- 
tion its position and motion at some iriititil time 
to. From the initial observations of the satellite, 
we tire able to deduce an approximation to its 
orbit, which will be the nuxiliar>- ellipse. We very 
c2Lrelullj cieIcrrriirie this firs1 iLpproxiiiiiLtiw so it 
will have a specific motion. The process Qf this 
careful determination is essentially one of septirat- 
ing the secular motions from the periodic motions, 
both of which are ci;uscd by the disturbing poten- 

673-619 -64-3 

tial of the earth. Out of this separation process 
come two products: (1) a set of equations which 
defines exactly in time the position of the fictitious 
satellite, and (2) a set of equations which gives 
exactly the relationship between the r e d  and 
fictitious satellites in time. Using these two 
results, we are able to determiiic the position of 
the fictitious satellite a t  sonic desired futurc time, 
and then the position of the r cd  satellite at that  
time. 

THE COORDINATE SYSTEMS 

Hansen's first step was to introduce a rotating 
coordinate system. He then defined tlie motion 
of tliz rotsting system in sucli a way that the 
equatioiis of motion were invariant in it,  i.e., lie 
made his rotating system itled. The coordinate 
systems used by Musen are the s ime as Hmsen's, 
so only one discussion is needed. 

In the hlusen development, n right-handed in- 
ertial orthogonal s-stem xyz is introduced, with 
its origin at  the center of the earth, its z and y 
axes in the earth's equatorial plane, and its z axis 
towards the north pole. Then a second orthogonal 
sp.teiii, tlie X Y Z  system, is obtained by rotation 
through three Eulerian angles from the zyz system 
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(see Figure 3). If the X Y Z  systetn is originidly 
identicd to 1yz, its first rotation is that of the ik‘ 
and 1’ iixes through :in angle eo ilbout tlie P axis. 
Nest, the tind Z axes are rotated tliroiigli ;in 
angle io about the X axis. The third rotation is 
that of tlie X arid I’ iixes through an mgle -go 

about the Z a i s .  After these three rotiitions, the 
point where the X axis intersects the celestial 
sphere, riatiied by Cayley the dep:wture point, is 
the point frotii which id1 angles in the XP plane 
are 1iic:isured (Referenve 1, p. 60). 

Z 

\i; 
z 

‘X 
FIGVRE 3.---Groinetry of thc dcparturc point 

Kow, with the origind position of the XJ’Z sys- 
tem defined hy the angles 00, io, and uo, we inipose 
such conditions a s  to render it :in ided sj-stem. 
The first condition is that the XI7 plane be al \vap 
the instantaneous plane of the satellite’s orbil; that 
is, the XY plane always contains the insttintimeons 
position vector and velocity vector of the satellite. 
The second condition imposed is that  after the 
originril position of the X Y Z  system is defined by 
the angles eo, i o ,  and u0, the angulnr velocity of the 
system, considered as a rigid body, hiive a coni- 
ponent of zero along the Z axis. These two con- 
ditions define the rotating coordinate system as 
ideal, and give rise to the two important relations 
developed :it the end of Section I. It is helpful 
to prove this result. 

PROOF THAT THE ROTATING SYSTEM IS IDEAL 

The form of the equation of motion which 
includes the disturbing force is 

Operating with r x ,  we hcive 

1 rXr=--p (rXr)+rXF, 

r X  r ==r X F, 
or 

since (rXr)=O. But 

where in all cases 
R r X r = -  h 

(Equation 16) in which l / h  is twice tlie :Lreii swept 
out per unit time. So 

and Equation 52 becotiies 

1 tlK 
(yt (1) h (It R -  - +--=rXF. (53) 

Operating with R . gives 

But  R . R = l  arid R.dR/tlt=O since R is n unit 
vector, so Equiition 54 becoiiies 

(55) 

Now, operating on Equiitioii 53 with R X  gives 

yielding 
RxZ=hRX(rXF) .  dR 

Expanding the triple cross product, we have 

RX-=h[r(R dR - F)-F(R. r)]. 
dt 

But R .  r=O, so 

RX-==hr(R. dR F). 
dt 
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Operating on Equation 56 with RX and consider- But again using Equiition 16, we know that 
inc tirat 

R rXr=-,  h 
we have so we get 

(62) 
(1% r 

e = h ( R .  (1 t F)(rXH). (57) i l t 2  r7 i:=-+(R- F)R=--+F. 

We ]<IlO\5r (lR/& is perpelldicul;Lr to R, SO (RX(/R/&) 
is the vector ;tbout whicli we would rotate the X ,  y ,  and z ~ X S ~ S ,  

R to get dRldt. From Equation 56, this vector 
is hr(R. F) ,  and so wc see that all rotation of 
R is ihout r, a very informative result. We will 

If we write F in terrns O f  its conlponcnts dong 

an. an an F.=- I’+-  j’+- k’ a s  bY az 

(F)=- i’+- j’, 
let 

let this rotation vector be w ,  so an an 
a x  bY 

w=h(R. F)r. we can write 
Since tlie 1imit:~tions imposed on t h e  rotating 

coordin21te system tillow it to have only this rota- 
tion wound the instimtsneous radius vector, o 
represents the total rotation of the rotittirig 
coordinnte system. T h e  differcritial operator 
wliicli tidies into account tlie rotation w of one 
system with respect to mother is 

Therefore, the equations of inotion in the rot:rting 
system are 

(Ir 
t l  t r=-+wXr, 

itnd 
(58) 

d 
dt 

i = - i + w X i  
or 

r 
r3 +oX(oXr)=- -+F .  r =-.+-x d2r tlw 

t i t2  tlt 

(59) 

When it  is t&en into iiccount thut in our case 
w = h ( R .  F)r, the equations of inotion in the rotat- 
ing system become 

and since 
at 
d t i : = - + w X i ,  

we have, using Equation 60, 

an F==(F)+- k’  az ‘ 

But R(R.F) is just the c-oinponent of Falong the 
Z itxis, 1)ec:tusc R is identical to k’, so 

Upon substitution of Equations 63 and 64 into 
Equation 62, me hiive 

r an =--+ r3 (F) +- bZ k’. 
, 

However, the motion of this rotating coordinate 
systeiii is fixed in sucli ZL WILY thrtt the satellite 
alwiij-s nioves in tlie XY plnne, which iiiems that 
there is, in effect, n o  force component normal to 
tlie osculttting plum in the XY coordinate system. 
This allows us to consider 

and Equation 14 becomes 

Thus, we see that the differentid equation of 
iilotion relative to the system rigidly conncctcd to 
the orbit or osculating plnne is of exactly the same 
form as in the inertial system. Although this 
result may a t  first glance seem trivid or obvious, 
it is not to be expected in a rotating coordinate 
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system and must be shown. The importance of 
the result ciinnot be minimized for it leads to a 
great simplification of the development. 

THE AUXILIARY E L L I P S E  

We now have two coordinate systems defined, 
the inertial system and tlie X Y Z  rotating system 
in which the orbit plane is always the X P  plane. 
The standard approach in celestial mechanics is 
to introduce, in the plane of tlie orbit, some first 
approxiination to the real orbit. This inter- 
mediary orbit is determined, and then the devia- 
tions of the real orbiting body from it are deter- 
mined. Hansen’s method was to introduce an 
ellipse of constant shape into the osculating plane 
of the real orbit, with ao, eo, and no=a0-3’2 fixed. 
A fictitious satellite describes this ellipse as it 
moves in accordance with Kepler’s Laws. The 
ellipse is allowed only one motion in the X Y  
plane, and that is a rotation about the 2 axis, 
directly proportional to the eccentric anomaly of 
the fictitious satellite. Thus, the argument of 
perigee ?r in the X Y  plane is given by 

7r = TO +YE, (67) 

where y is :L constmt ctrllcd the secular motion of 
the perigee, to be determined in a specific manner. 
The directions and lengths of the radii vectors of 
the real nnd fictitious satellites are not identical, 
but differ by the order of mtignitude of the per- 
turbations. (The constants y in Equation 67 
and v in Equation 69 have notliing to do with 
the inertial coordinirtes.) 

The position vectors of the real and fictitious 
siktellitcs are related in space and time. The 
introduction of thc time diniension was one of the 
major causes of controversy among Hansen’s col- 
lengues, though it need not be such ii great obstacle. 
The first relationship is that the unit vector along 
the radius of the red  satellite, denoted by ro, has 
the siinie direction a t  time t that the unit radius 
vector of the fictitious satellite, denoted by FO, has 
a t  the “pseudotime” 2. Thus, 

ro(t) =Fo(z). (68) 

The second relationship defines the ratio of the 
length of the real satellite’s r:idius vector, a t  time 
t ,  to the fictitious satellite’s radius vector a t  
pseudotime z as ( l + v ) .  In  this riitio, v is small 
and can be considered :i “lengthening” or “short- 

ening” fnctor; r is the radius vector of the real 
satellite, and F is the radius vector of the fictitious 
satellite. The ratio can be written: 

r (t) = ( 1 + v) F( z )  . (69) 

It becomes necessary, therefore, to know the 
reliit ionship between the real time arid the pseudo- 
time, or “disturbed time,” as well as the factor v, 
to determine the position of the real satellite once 
the position of the auxiliiiry satellite is known. 
Let the difference in times be defined as 62, 

6z= z-t, (70) 
where 6z denotes the perturbation of time. We 
can write one further relation between the two 
satellites, and that is that the polar angle o of the 
real satellite a t  time t is equal to the polar angle 
(7+?ro+yAE) of the fictitious satellite at time z .  
In  this expression, 7 ; s  the true anomaly of the 
fictitious satellite (see Figure 4), AE=E--Eo, 
where E, is the eccentric anomaly of the fictitious 
satcllite a t  the epoch, and r0 is the argument of 
perigee of the fictitious satellite a t  the epoch. 
Again, y is the “secular motion” of the perigee. 
Both polar angles are measured from the X axis: 

(71) 
With the true anomaly of the fictitious satellite 

given by f’ and its eccentric anomtily by E, the 
motion of the fictitious satellite is governed by the 
usual two-body problem equations: 

(72) T cos f‘=a,(cos E-eo), 

u =f’+ T O  + yAE. 

- 
I- - - - r sin f=ao% 1 -eo2 sin E, (73) 

(74) 

E-eo sin E=go+no(t-to) +no6z. (75) 
The “area integral” for the fictitious satellite re- 
tains its usual form: 

- r=a,(l-e,  cos E) ,  
and Kepler’s equation becomes 

where 
1 h -  

-Jao (1 - eo2) 

(see Appendix A). 
From the above set of equations, the motion of 

the fictitious ellipse in the osculating orbit plane 
can be uniquely determined. The essence of the 
problem, then, is to determine v and 6z in order 
that  the position of thereal satellite can be found. 
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axes .  
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F i c t i t i o u s  

xd 1 
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B = angle x m  
rn = angle Xm 
i angle between p lanes  
f = angle  OPT 
w = angle mOP 
v = angle XT 

- 

7 r =  u t a  

FIGURE 4.-Thc geometry of the auxiliary ellipse 
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SECTION I11 

THE DISTURBING POTENTIAL AND ITS PARTIAL DERIVATIVES 

THE POTENTIAL FUNCTION IN TERMS OF THE 
GEOCENTRIC LATITUDE 

The earth’s disturbing potential function is 
defined as the negative of the difference between 
the earth’s gravitational potential and the poten- 
tial of a perfectly spherical earth of the same mass. 
Musen writes this disturbing potential D explicitly 
to the fourth order in zonal harmonics, where the 
first harmonic is obviated because the origin is 
taken a t  tlie center of mass. He  gives 

(77) 

where $ is the sine of the geocentric latitude, and 
(as is shown in Appendix A) is given by  

$=sin i sin (8-u) ,  (78) 

and I C z ,  IC,, and I C ,  are the geodetic parameters of 
the earth. 

As is generally true in cliissiciil celestial me- 
chanics, i t  is convenient to develop the perturlm 
tion equations in terms of the partial derivatives 
of tlie disturbing function. In hZusen’s develop- 
ment, these partials should have a very particiiltlr 
form, that of Fourier series whose terms have 
arguments containing the eccentric anomaly E 
and the argument of perigee (nicwiired from the 
node) w. This form is required by Jlusen througli- 
out tlie developrncnt, and malccs much ciimlwr- 
some algehrii necessiirj-, but the end result is t1i:it 
all prrtitrhtion functions can be etisily liatidled. 

In order to  get + in this desired forin, we mtike 
several transformations. The first step is to define 
u, and eo, t he  angles which designate the original 
position of the X I Z  system (see Figure 3) ,  in such 
a way that the following two equiitions do not 
contain any constant terms: 

2 N = u , + e o - u - e - 2 a ~ ~ ,  (79) 

2K= u0- eo- u + ~ + ~ ~ A E ,  (80) 

where AE= E- E,. 

We will now show that N and K are periodic 
only. The quantities u--uo and e-eo by defini- 
tion contain only periodic and secular ternis. 

S e d i i r  ternis tire those which :ire proportiorid to 
time. If the secultir terms contained in the sum 
of (u-UO)  and (e-e,) are denoted bj- --2aAE, 
then N contains periodic terms only. This defini- 
tion of 2aAE deterinines the consttint a. Sinii- 
larly, by denoting tlie secular terms cmtiiined in 
the difference of (u-u,) and (e-e,) by 27AE, 
the constant 7 is detennined and K contains only 
periodic terms. The deternlirliitions of a, 7, and 
one :Ldditiond determination of ’y, the secular 
motion of the perigee, lead to tlie development of 
2, ‘y, z containing periodic ternis only. These 
requirenients are equivdeut to the requirement 
that our expression for the “perturbation of tinie,” 
no&, contain periodic terms only. 

Re;irninging Equations 79 iind 80 we can write 

u = UO- (a  - 7) AE- ( N f  K)  , (81) 

e=eo-(a+v)aE-((nT--K), (8-2) 

in which the constiint, secul:ir, iind periodic. pilrts 
of u iind e iire cleiirlj7 separ:ited in tluit order. 
Then taking Equitions 71 iind 81 into considera- 
tion, we have 

- 
8- ~ = f +  (TO- go)  + (y+ a-v)AE+ (N+K). (83) 

We nest define the niem v d u e s  of these t h e e  ele- 
ments, denoted by ( u ) ,  (e), : i d  (a), by tlie follow- 
ing equations: 

- 
and since w=u-a-f (see Figure 4), 

( w )  (TO- g o )  + (Y+ a-7) AE. (86)  

Considering Equations 83 and 86 we can now write 
for Equation 78 

+=sin i sin [f+ ( ~ ) + N + K ] .  (87) 

We now introduce four parameters, which we 
can see by inspection contain the periodic parts of 
the three elements, u, e, and i, and also the con- 
stant part of i. The phj-sics of tlie problem allows 
no secular motion of the angle of inclination, so it 
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is of no concern to us. 
introduced are 

The four parameters 

J 1 X ~ = C O S  -- COS K ,  2 

and clearly we hive the condition that 

XI*+ X p 2 +  X?+ X42= 1. (89) 

Now if we expttrid Equation 87, we have 

+=sin i cos (N+K)  sin [.f+ ( W ) ]  

+sin i sin (N+K)  C O S  [7+ ( w ) l  (90) 

wliicli, after further expansion arid use of the 
reltt t ioriship 

i i  sin i =2  sit1 - cos -, 2 2  
1e:ids to 

+ = ~ ( x ~ x ~ - x ~ x ~ )  siri [f+ ( W ) ]  

+2(X*X4+hX3)  cos [7+(4l, (91) 

leaving only j iirici (0) in t tie wgument. 
As Musen points out in his original paper 

(Reference 6) ,  the advantmge of using the four 
pmimeters is one of symmetry, allowing the 

eventual use of the neat rottition matrix. How- 
cvcr, the p:irtirneters clioseri give rise to trouble 
if the satellite his an iriclitiution in the region 
around T / Z ,  that is, i t  is a p 0 1 ~  s:ttellite. For this 
ctise the three Httnsen pmmeters  p ,  q, and s 
wliicIi still contain only -7 airid ( w )  in tlicir argu- 
ments are useful. They :ire defined in terms of 
the X purumeters (Reference 6 )  as follows: 

A3 

A 4  
s=-= tan K. 

This exposition will not deal with this special case, 
but the approiich followed is exactly parallel to 
that using the four X pariiriieters. 

We perform two additional transforriiiitions to 
m i v e  tit :i firin1 form of + in which the Iirgurnents 
are written in ternis of E and (0). The first of 
these is to introduce two functions 1 and m which 
h;ive the forriis 

- 
(93) 

r 
a0 

I=- cos [ f + ( W ) l ,  

(94) 
r 

a0 
m=- siii [.f+(u)]. 

Considering thtit 
- 
r=ao(l-eo cos E), (Equti t ion 74) 

r C O S ~ ~ = ~ ~ ( C O S  E-eo), (Equation 72)  

(Equittion 73) 

- - 

- - 
r sin f=aol'l -eo2 si11 E, 

we can write 

1 ( I + J W )  cos [ E + ( W ) l  

1 
2 +- (1-1 1-ei2) cos [ E - ( w ) ] - e ,  cos ( w )  (95) 

and 

Substituting Equations 93 iitid 94 into Equ:ition 
91, we hiive for + 
+=a 4 (XJ4-X2X3) u + 2  (s) (XZX4+XlX3)I, (3 

(97) 

where m iiiid I have been expressed in trigono- 
metric series whose arguiiierits are in teriiis of E 
axid ( w ) .  We will next find such a forrii for ao/F 
iiiid in the course of the developrnent will show 
how the X piiriinieters evolve into Fourier series in 
E n n d  (w) .  

DEVELOPMENT OF IN SERIES FORM 

Brown iind Shook (Reference 7, p2ige 70) 
describe the development of (ao/7)" into a Fourier 
series in E, but for our purposes only the first 
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power of the expression is needed. First we 
define two functions 4~ and p: 

+=sin-' eo or eo=sin 9 (eo is eccentricity), (98) 

and 

(99) 

Hence, 

Using Equation 100, we know that 

a0 - 1 1+B2 -_ - r l - e 0  cos E=1+p2-2p cos E' 

Writing cos E= (eZE+e-zE)/2, where e is the base 
of natural logarithms, and rearranging, we have 

- a0 - 
r (eZ"-p> (l--petE)' 

This can be expressed iis the sum of partial frac- 
tions in the usual niiinner, and for convenience, 
since p lies between zero imd one, ciin be written 

( 1 + P I  e' E _ -  

)I +beiE (1+pet"+~ze2fE+ . . . 

1 --2(;q - [:+, cos ESP2 cos 2E+ . . . . 

But froni Equation 100, 

so 

2 a0 - -- ~ ( i+b cos E+p2 cos 2E+ . . .). (102) r 4 1  - eo2 
- 

With the ao/F series written in terms of the 
eccentric anomaly E, and with the parameters 
eventually developed in E and ( w ) ,  it is clear 
that  t,b is in the find series form desired. If 
placed in the potential function 3, and with l/r 
written as 

1 l a ,  1 _-- - ~ - 
I' a, 7 ( l + Y ) '  

where l/(l+v) is a Fourier series in E and ( w )  
alone, the potentiiil function 3 iind its partiid 
derivatives could be given as trigonometric series 
in E a n d  ( w )  alone. 

SEPARATION OF THE TWO ECCENTRIC 
ANOMALIES 

At this point in the development, we come to 
one of the most difficult operations, one which 
usually is a major obstacle to a clear understanding 
of the theory. The fact is that we have to 
distinguish the E entering into the development 
of the perturbations from the "elliptic" E entering 
into equations derived by using E as a geometric 
angle. This distinction is a very subtle and 
confusing one, and must be handled very carefully 
throughout the development and the computa- 
tional process. As Musen points out in his paper 
(Reference S), E has the usual geometrical mean- 
ing, when describing the motion of the fictitious 
satellite in its ellipse. However, the perturbation 
expressions are developed using the eccentric 
anomn1.v as the independent variable replacing 
time. These two types of E must be distinguished 
from each other because the piirtial derivative 
of the potential function bQ/bE is taken with 
respect to the "elliptic" E. 

The reason the sepnnition is made will not be 
found in the physics of the problem. Rather, 
this separation is a mt~thematical trick to facilitate 
the development of one differential equation 
which requires only one integration to find thc 
perturbations - in thc orbit plane. The expression 
TI7 containing the perturbations in the orbit plane 
is an explicit expression of the three variable 
elements, h, e ,  arid X, where x is the argument of 
the perigee (sometinies denoted hy T ) ,  However, 
the development of the elements in terms of the 
potential function provides only the derivatives 
of these elements. Therefore, rather than per- 
form these integrations to find h, e ,  and x which 
are then substituted into v, it is preferable to 
form dw/dE which is written explicitly in terms 
of the three derivatives. This allows us to find 
W by the single integration of its derivative. I n  
order to perform this process, F and 7, both func- 
tions of E which appear in the Wfunction, are 
considered constant. 

The method used to distinguish between the 
two types of eccentric anomaly is to temporarily 
let the "elliptic" E be F, and to consider F 

- 
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constant. Replacing 7 ,  f ,  and E by P ,  5, and F,  
respectively, in Equations 72, 73, and 74 we have 

(103) p cos +=ao(cos 3’-eo) ,  

(104) p sin +=a03 1--eo2 sin F, 

(105) p=ao(l-eo cos F ) .  

Furthermore m and I, in the actual computation 
of 9, will be written in terms of F and will be 

that E has been replaced by  F i n  the proper places. 
After the integration to get UTl which contains 

E and F,  the temporary substitution is dropped 
and the F’s are replaced by  E’s. Throughout the 
development, this replacement of E’ by *- E is done 
by  the “bar” operator; thus, f(E)=f(E’). The 
procedure was irit roduced by Hansen for the same 
reason described here; however, his problem was 
to distinguish between the time t entering into 
T and 7 through z, and the time in the elements. 
(See Reference 8 ,  p. 304 or Reference 1 ,  p. 169.) 

FORMATION OF THE PARTIAL DERIVATIVES 
OF THE POTENTIAL FUNCTION 

- - 
I- - - 

- 

I 

D called m* and I*. The ‘Lstar’l operation means 

- 

So, in order to find the partial derivative of the 
potentid function which will enter the devclop- 
Iiient of the perturbation expression d r / d E ,  we 
take >is given in Equation 97. In the expression 
used, called #*, we will have a o / l ,  m, and 1 re- 
placed bj- ao/P, m*, and I*, respectively. It is 
iniporttint to note that the X pmiiiieters do not 
contain F, but :ire always expressed in terms of E. 
So we could write 

where a0 / is tl series in F ,  and m* and I* are 
series in F and (a). After $* is placed in the 
potentid function, one iurther replaceiiient is 
necessary to get the find form a* which will be 
used to find the derivatives. Since the l/rn 
factors in the potentid function :ire found €ram 
the form 

ao/F is replaced by ao/p, and the find form of the 
potential function is: 

F73-619-Cd-4 

where #* is given in Equation 106 with 

a0 - 
P -\ .1-eo2 

(++p cos F+p2 cos 2F 2 
- - -~ 

+p3 cos 3 F + .  . .), (108) 

m*=:$(l+~’l-e02) sin [F+(w)] 
-+(1--\.’1-eo2) sin [ F - ( w ) ] - e o  sin (a), 

(109) 
1*=$(1+> 1-e:) cos [E’+(w)] 

++(i-,/i-) cos [ F - ( w ) ] - e o  COS ( w ) .  

(110) 

The ( l + v )  factor in Q*, as is true of the 
par:inieters, is 111mi-p 11 series in E and (a); no 
replaceinent of E by F is ever made in the series 
for v. The form of this series for v will be de- 
veloped in later sections. In  the developiiient of 
dW/dE ,  the pirtial derivatives r(&/br) and 
bn/dE :we needed. IJzLter on, the derivatives of 
the functions will contain explicitly the partial 
derivatives bQ/b$. The partial derivative bn/dE 
is obtained by the forriinl differentiation of Q* 
with respect to F and application of the “bar” 
operai t or 

an Dn* --__. 
bE- bF 

The piirtial r.(dn/br) is obtained very siniply from 
the differentiation of Eqiuition 77, and use of 

This gives 

which is easily seen t’o be 
(113) 
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where Q,, Q3, and Q4 are the lst, 2nd, and 3rd 
terms of Equation 77, respectively. This is 
identical to 

where @, Q;, and Q: are the first three terms of 
Equation 107, respectively. 

T h e  partial derivative dQ/d$ is obtained again 
by the formal differentiation of Q* with respect 
to +*, and is then “barred”: 

(116) 

where 

At this point, it should be noted that ciireful 
developnlent of the  terms i n  a* ciiii result i n  tlie 
following Fourier series forni for Q*: 

Q * F ~ ~ ~ c 2 , f , k  cos [iEf2j(w)+kF1 

+ C C ~ S , . , . ,  sin [ iE+(2 j+l ) (w)  +W. 
(118) 

The fact that  the coefficients of ( w )  tire in this 
forni is purely ti result of the for111 in which ( w )  
enters into m*, I*,  l / ( l + v ) ,  and the A’s. It should 
be noted that even though $ and fl are starred, 
they contiiin E. This is agnin a result of tlie fact 
that  not all the E’s are replaced by F’s; the A’s 
and the l / ( l + v )  term retain their form in E. 
The star really indicates only that  F’s are present. 

After Q* is differentiated with respect to F, and 
then operiited on by the bar operator to get dQjdE, 
the form is 

dQ 

( I l c  

4 

1 
-- , , - ,pC,,  5 cos [iE+(?i+1) (all 

3 

+Y,Y,Sz,2 sin [iE+2j(o)l. (119) 
1 3  

The partittls bald$ and r(&/br) will have rietirly 
the sttnie foriii tis bn/dE, but tlie indices of (a) 
will difler. (See Sectioii 1-11.) 

Now that we h v e  determined the expressions 
for the pzirtid deriviitives of the potential function, 
we tire able to begin our developlnent of the TI’ 
function, the bttsic perturbntion function wliicli 
itself contains till the perturbtitions of tlie siitellite 
motion in the orbit pliine. 

SECTION IV 
EQUATIONS FOR THE PERTURBATIONS IN THE ORBIT PLANE 

Hansen, arid correspondingly lIi1sen, hiive di- 
vided tlie perturbations of the orbiting bod~-’s 
motion into the perturbations i n  the orbit plme, 
and those of the orbit plane. I n  the orbit plane, 
the deviations from the two-bodj- path are con- 
tained in v, the shortening or lengthening factor, 
and no&, the perturbation of the mean anomdy. 
The factor v can be thought of tis containing the 
variation of the elements a and e, whereas the 
tingle no& contains the variations of the argument 
of perigee (the periodic varicitions) and the mean 
anomaly of the r e d  satellite. The determintttion 
of both v and no6z is done by  finding one function, 
the W function, which includes the perturbations 
of all four elements. 

I n  hlusen’s development, tlie object is to express 
tlic quantity for dW/dE tis u Fourier series in E, 

(a), and F’. Getting an expression of this form 
involves considerable arnourit of rnwnil”ilatioii, 
transformtbtion, t ~ n d  algebrw; arid ws a result it is 
virtually impossible to relitte the developed equa- 
tions to the physics of the problem. In  addition, 
the variable elements themselves are lost in the 
transformations, and the final form might appear 
- meaningless. It should be kept in mind tlittt after 
IT‘ is originally defined, all efforts are made to find 
its derivative in a Fourier series with arguments 
containing integral multiples of E, ( w ) ,  and F. 

I n  the process for deriving dU‘/dE, we will 
obtain an expression for dno8z/dE, which we will 
integrate to get a final series form for no&. Also, 
in the course of the development, we mill produce 
n, series form for IT’ which isolates the terms con- 
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taining sin F and cos F. This series will be used 
in the iteration processes to determine v. 

I n  
this part of the exposition, we are only developing 
expressions, series expressions, for d W/dE, W,  and 
dn,Gz/dE. The methods by which these series are 
used to calculate perturbations are discussed in 
later sections. The purpose of this section is only 
to show the origin of the equations. It will be 
noticed that the final explicit expressions are in a 

will have U’ in it. It is to be understood that 
W,+,=f(W,), where TI, is the number of the 
iteration. 

We 
do this by setting up an expression for the “per- 
turbation of time’’ no6z. We take Equation 71, 
which gives the polar angle of the real satellite a t  
time t equal to that of the fictitious satellite a t  
pseudotime z, that  is, 

One more remark would be helpful here. 

b form suitable for iteration; that is, the W function 

Our first step is to define the U7 function. 

v = .F+ TO + y A E ,  

where AE=E-Eo and y is the secular motion of 
the perigee of the auxiliary ellipse in the X Y  plane. 

Differentiating, we have 

But  we know from our “area integrals” (see Ap- 
pendix A) that  

dv 1 
d t -hr2 
--- 

and 

Substituting into Equation 120 we have 

1 dz 1 dE 
p = ( E  , b , , s Y  dt 

or 

But  we know that 
- 1  r -  ._ __ - 
r l + v  

by definition, and 
1 h, = 

1aI(l--o2) 

(see Appendix A) ; and, from Kepler’s law, 

which gives us 
ng=a0-3/2 

Substituting these into Equat,ion 121, we have 

or, since Gz=z-t and 

as2 dz  _--_ 
dt -at l 1  

we have 

We see that Equation 123 gives the time deriva- 
tive of the “perturbation of time” and is expressed 
in terms of twyo other perturbations ho/h and 
l /( l+v),  as well as the secular motion y of the 
perturbed perigee. However, we wish to separate 
the higher and lower order perturbations, as a first 
step toward developing the expression in a form 
suitable for iteration. We can write 

which is put into Equat’ion 123 and gives 

Now, if we collect the first three terms in a single 
funct.ion which we call w, we have 

where wc can scc that  5?i is of the order of the 
perturb a t ions ~ and 
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But  now, since we know that the equation of the 
orbit is 

a(1--e2) 
l+e  cosf 

r= (See Appendix A), 

where in Musen's method T= (1+v)7, we can pro- 
ceed ILS follows: 

We have shown previously (page 7) that  
q=heP, where P is a unit vector directed from 
the origin to  the perigee, and we know r is the 
vector directed from the origin to the real satellite. 
Therefore, the angle between r and P is the true 
anomaly f. And, by  the definition of the dot 
product, we see 

- r q  -=cosf 
r he (127) 

or 
r .  q=her cos f. 

Now from the equation, 

1 /-- 
x===l ~ ( ] - e ~ ) ,  

we see that our equ:itiori of the orbit can be written 

1 hr+her Gosf=-;  h 

and if we divide this through by ( I - I V ) ,  

But we liitve shown in Equation 127 that  
her cos f = r  . q, so 

But  
r -  
,- 

l + v - '  
and 

1 
~ (r . q)=F.  q ,  I t v  

and thus 

(128) 
hT;+F. q=-. 1 

h(l+v) 

From Equation 128, we can write 

~=-1--+2h0h7$2h, h F.  q 
h 

but since 

we have 

Now, as has been previously discussed, for the 
development of the differential equation for a; i t  
is preferable to sepamte the perturbations from 
the elliptic motion. Thus, we will replace the P 
by F, I: by p ,  and 7 by G ,  so that we have the basic 
ellipse eqimtions written as 

4 

- - 
p cos +=a,(cos F-e,) ,  

- - p sin + = u , ~ ' ~  sin F, 

- p=a,( l -e ,  cos F), 
and 

- - . I -  ,,-I p COS (Tn+g+yAJI)+j'P sin ( T o - + G + y ~ ~ ) .  

l\l:iI<ing the proper replncemerits in II', we now 
have our first expression for M'. To be consistent, 
we should call this E'*, hut neither Hmsen nor 
lfusen hiis used the M'* notiition. Thus, we 
shd l  use W here, remembering that 14' hiis the 
appropriate E's replaced by E"s, and that hiLs 
all the F's replaced by  E's. We have 

But  since 

q=heP=he(i' cos x+j '  sin x), 

where x is the osculating argument of the perigee 
as meiisured from the departure point (see sketch 
on page II),  and since 

p . q=hep[cos G + ~ , + ~ A E )  cos x - 

+sin @ + T + ~ A E )  sin X I  

(131) = heZ[cos G+ T O +  y ~ E - x )  I ,  
we have the clmsic equation 

(132) 
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Using Equations 103, 104, and 105, we have for m’, 

[(cos F-eo) cos (ro+yAE-x) 

(133) -\’l--eo2 sin F sin (~~+yAF-x)l .  

1 
Expanding Equation 133 gives 

(134) 
which we c:in write as 

U’=E+r cos F+.k sin F (135) 

if we let E ,  r, and \E. equal the first, second, and 
third bracketed terms, respectively. We see here 
that 2, T, and * are functions of E and contain 
no F‘s. Now, if we multiply T through by eo, 
and add it to E ,  we will have 

This is t i  very important reliltion, to be used in the 
detcnnination of h iind ho, and it should again be 
rioted t h t  i t  gives ho/h arid h/ho in terms of E and 
(w) done. 

But for now let us turn our tittention to the 
developinent of the differential equation for W. 
We operate on Equation 130 with Brown’s 
operator 6ldt: 

Since h is :I function of the elements done, tind ho 
is i i  function only of the constant eleiiierits a. and 
eo ,  we lmow that 

and I 

We also know from the equations of motion in 
polar form (see Appendix A), that  the component 
of the acceleration in the orbital plane perpen- 
diculw to the radius vector is 

1 II_ (/.2 2). 
r d t  

Written in terms of the disturbing potential (this 
component depends on the disturbing potential 
done), this gives 

but we have defined the “area” as 

so we have 

or 

clt (‘> 7L = X I ’  (139) 

From Equation 139, mother result appears: 

Then, we recall that, q=heP where P is a unit 
vector, and thiit 

fq=”g=(rOXR) -+ro an (!+h2) bu bn (141) t l t  d t  8r 

from Equation 46. Furthermore, we know the 
perturbations in are present only in the vector’s 
rotation due to the rohtion of the auxiliary ellipse 
in the XI7 plane. This rotation of around the 
Z axis will be given hy 
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since y(dE/dt)  is the angulnr velocity of the ellipse 
in the X Y  plane. Cletirlj-, the scalar 3;; is not 
iiffected by the perturbations; that is, 

P=O. 6- 
d t  (143) 

Taking Equations 138 through 142 into con- 
sideration, we are able to rewrite Equation 137 as 
follows: 

2 

(144) 

or, f i ndy ,  

We wish to simplify this expression further. To 
find d,/dt, note that p = p p o .  Froin Equations 103, 
104, and 105, we obtain by differentiation and 
some algebra 

(147) 
6 _- dF-aoeo sin E', 

From these, and the fact that dpO/d$=RXpO 
(by the definition of the derivative of a unit vector 
in a plane), we get 

dF -ClpO& o"p d E ' = = P  - , + P  Cl+ d E  dF 

Now, differentiating Equation 130 

wit,li respect to F, we have 

This last equation for bV'/bF can be rearranged 
and written 

Bq . poaoeo sin F] -. 1 
hoao(1-eo2) 1-e: 

and divided by a,, this 

- - 

Multiplied through by 
becomes 

2q.  (RX P )  
hogdl -eo2) 

This, with the aid of Equation 130, can be written 

Substituting this into our last equation for dV'/dt 
(Equation 146), we have 
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Now taking our original definition of 
125) we see that 

(Equation 

and 

h-(*) h -  1-v  ( F + l ) .  

Putting this into our last equation for d6z/( 
(Equation l26), we have 

V2 -- d6z-F+(*) ( F + l )  (1sv)L 
at 1-v 

--____ 

If we niultiply through by no and rearrange, this 
beconies 

dno6s: now( 1 - v') +n,v'(W+ 1) y -~ -- 
nt - ~ 1-2 

or the generalized Hill forniulu 

NOW, differenti:iting Kepler's equation 

M=E-eo sin E=~~o+no(t-to) +no6z 

with respect to E we have 
(Equation 75) 

(It (ln,,6 z 1-e, cos E=no -+-. dE dE 

But since 7=ao(l-eo cos E) ,  we have 

dt 7 dno6z 
no-----. tlE-ao tlE 

Multiplying Equiition 152 by dt/dE : i d  using 
Equation 153 in the result gives 

which siinplifies to 

Therefore, 

This is close to the final form of the derivative 
which we must integrate to find the perturbations 
of time. We will discuss its properties later, but 
for now we must use it in the further development 
of dW/dt. We nest substitute i t  into Equation 
153 to  get 

or, finnlly, 

This is an irnportnnt equation which will also be 
used in the development of the derivatives of the 
X ptirii I 11 et ers . 

Kow, as a find step, we must express our 
derivative in terms of E. We know that 

(156) 
&-an a7 aQ a7 _ _ ~ -  
bE 37 aE+$ %' 

where, by differentiation of Equations 72, 73, 
and 74, 

And given v = T O  +f, we 1i:ii-e 
bQ an 
bv=s. 

Also, since r=( l+v)T ,  

So we can write for Equation 156 

_- afl . r a n  anaoJl-eo' dE-uoeo sin E = - +- - 9 r br dv r 
or 

( 157) 
r eo-sin E bQ ,~ r - .  

a c  uol 1 - eo2 > 1 - eo2 ar 

Tidiing Equation 157 arid our lust equtitiori for 
no(dt/dE), Equation 155, we want to substitute 
into our equation for dU'/dt, Equation 151. First 
niultiplying through by dt/dE, and using Equation 
155, we have 

-- 
~~ 

.- 
an __ - 
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(158) 

SECTION V 

dW FINAL EXPANSION OF 

We now turn to expanding Equation 15s in 

If we let 
teriiis of the two eccentric anoriiiilies E and 3'. 

we have 

The process of expanding Equ;ition 160 is n long 
and troublesome one. It is desirable for us to 
expand it  term bl- term, so we write 

-=A' + B' + C' + D' + E' + F + T ,  '' dW 
dE 1--eo (161) 

where 

IN TERMS OF P AND F 

Now, we will deal with A' alone. Using the 
known relationships 

+sin g s i n j ) ,  
- 
r.=ao(l-eo cos E ) ,  

- p=a,(l-eo cos F ) ,  

1- C O S ~ = U ~ ( C O S  E-e,), 

T s i n f = a o d m  siri E ,  

p cos~=u,(cos F-e,), 
- p sin +=aot/- sin F. 

- 
- - 

- 
- 

We can write A' in terms of E and F. 
have 

First we 

A ' = A - - - - - -  baoQ 1 1 [(z) 51. (163) bE (1 + Y) ( 1  - eo2) 



COMPUTATION OF SATELLITE ORBITS BY THE HAKSEN METHOD AS MODIFIED BY MUSEN 29 

The term in brackets in Equation 163 can be 
written 

+2t’1-eO2 sin E,’l-eo2 sin F 

=cos (E--F)+cos (E+F) 

- Z e o  cos F-2eo cos 

+ ( 1 - eo2) [ c.os (E- F )  - cos ( E  + F )  ] 

= (2-eo2) cos (F-E)  +eo2 cos (E+$’) 

-Zeo cos F-2eo COS E+2e02; 

and we have A’ in ternis of E and F: 

+eo2 cos (E+F)-2eocosF-2e0cosE+2e,2]. 

(164) 

Nest, we tnlie term B’ which, using Equation 
162, we can write 

-- 1 eo2 cos 2 E - e ] .  (165) 2 2 

Now, G‘ can be written 

27 ;sin;  sin? 
ao a,J1 - eo2 a,T’l--e,’ +- __ 

2 7 7  - p .  

1- 
- ~ - - -  

i- 1-eo2 ao ao ao~~l -e ,2  

Applying Equation 162, and substituting the 
result in Equation 166, we get for C’: 

aaon h2 1 C’=A __ - [ 2  cos (E-$7-2 aE h,2 (1--eo2) 
-e, cos (2E-3’) - e ,  cos F+2e0 cos E]. (167) 

Next, treriii D’ of Equation 161 can be written 

and so 

( 168) 

The next term E’ of Equation 161 becomes, after 
consideration of Equation 162 and using the fact that 
p ’ .  (roXR)=ij sin (J-;), 

- r - -  -- 2; cos (f-4) p2 e, sin E]. (169) 
r 1-eo 

For the bracketed part of this equation, we write 

-(1-e;) sin F(cos E-e,) 
-(eo sin E)(cos E--,)(cos F-eo) 

-eo sin2 E(1-eo2) sin F ]  
which aft,er rearrmging becomes 

1 Qn 2a, - {sin E[ (I  - eo2)  (cos F- eo) (1-eo2) ( l + v )  7 
Since F ro=i; cos (z-?), we can write the brack- 
eted term of Equation 166 tts 

-eo(cos F-eo)(cos E-e,)] 
-sin F[(1-eo2)(cos E-eo)+eo(l-eo2) sin2 E l ) .  
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But  sin2 E=l-cos2 E, and ao/7-=l/(l-eo cos E) ,  
so we have 

~~ 2[sin  cos F-eo) 
(1-eo2) (1+v) 

-sin F(1-e:) cos E ]  

1 

- 
(1-eo2) l + v  

1 +z sin (E-F) -e ,  sin E 

(1-e 2, -~ ('"')sin ( F + E ) - A  sin (F-E)] ,  
2 2 

Thus, Equntion 169 for E' becomes 

- (2-eO2) sin (F-E)-2eo sin E )  . (170) 

We nest determine terin F' in ternis of E and F: 

1 
first we rewrite F' as 

Considering the bracketed teriii, we see tliat, 

which, after some algebra, becomes 

e ,  sin (F-2E)-e0 sin F+2eo siri E. 

Putting this into Equation 171, we have 

[ e o  sin (F-2E)-eo sin F+2eo sin E].  
We now return to Equation 161 which was 

(172) 

If we replace A', B', c', D', E', and F' by the 
values given by Equations 164, 165, 167, 168, 170, 
and 172, respectively, we can write our find equa- 
tion for dW/dE as follows: 

where A and S are given in Equation 159 us 

and kl and N are given by 
h2 (l-eo2)A41=- [ 2  cos (E-'--F)-2-eo cos (2E-27) h,,' 
- e ,  cos F+2e0 cos E]  

+--v [ (2 -e ,2 )  cos ($'-E) 

+ p i '  cos ( E + F )  
-2eocos F-2eo cos E+2e02] 

1 
1+ 

1 e 2  
- 1 +2eo cos E-2 e;  cos 2E-L  2 

and 

( l -eo2)N=- [ e ,  sin (F-2E)-e0 sin F+2p0 sin E ]  h' 
h,,' 
+-; [(2-e,2) sill (E-$'-&, sin E 

+e;'sin (E+F)]+eo sin E--U siri 2E. 

1 
1+ 

e 2  
2 

SECTION VI 
DERIVATIVES OF X PARAMETERS, EXPRESSIONS FOR ho -? -9 h AND v 

THE X DERIVATIVES this development. 

h ho 

I n  Section V, we arrived a t  the find form of the 
differential equiition for d W/dE. We developed 2N=ao+Oo-a-O-2aAE (Equation 79) 
it in a form such that all its components are 
trigonometric series with arguments containing 2 K = a o - O ~ - a + O + 2 ~ A ~ ,  (Equation 80) 
only E, F, and ( w ) .  Xow we turn our attention 
to the inucli simpler developnient of siniilur forms 

We have previously defined 2N arid 2K B S  

lLnd 

and we have developed the expressions 

for the derivatives of the x parameters. Several (10 bn 
reliitioiiships we hive found before :ire required in dt bZ siri i -=h - r sin (v-a), (Equation 32)  



COMPUTATION O F  SATELLITE ORBITS BY THE HANSEN METHOD AS MODIFIED BY MUSEN 31 
da dB or z-dt -_ cos i ,  

b O  6 - h  - r COS (a-a), dt- bZ 

bD bD . r -=- cos 2 .  
bZ b* since x2 was originally defined :is 

(Equation 50) 

COS N cos (a-a) 

1 
(Equation 28) i 

2 +cos -sin (2’-u) sin N 9 (177) 

(Equation 51) 

Also, we have i Xz=sin sin N .  
L 

no dE=G dt r 17 1-2 (1 +>*; (Equation 155) 
Recasting the second term of Equation 177 we 

But  in Equation 159 we defined 
- A=- 1-2 ( l + L T ) ,  

1- 1+W 11--eo2ao 

so we can write 

A (174) 
dt  7 
dE-nyo 

(175) 
dN 1 du 1 de tlE 

_- 

-- - _ _ _ _ - _  
d t -  2 d t  2 d t  “dt‘ 

Substituting Equations 32 and 50 into this yields 

dN 1de . 1 1 bQ dE cos z-- ~ h - r sin (t~-u)---a - dt  - 2 d t  2 sill i bZ dt 
- 

or 

dN -=-“---h- dE ” r sin (u-a)(cot i+csc i )  
tf t dt 2 az 

r sin (v-u) cot -. ---cu---h- 
dt 2 bZ 2 

1 
(156) 

- (IE 1 m 

have 

dA, c ~ E  1 bD _- -ax2 -+- aoh(l+v) - 
clt d t  2 bZ 

[; cos cos N cos (0-a) 

1 
- r i  

2 +z cos - sin (0-a) sin N . (178) 

The bracketed term of Equation 178 can be 
written - r i  

a0 2 
[ ]=- COS - COS [N-(u-u)]. (179) 

- 
Sirice a-u= j+(w)  +N+K, from Equations 83 
and 86, the right-hand side of Equation 179 is 

r i  -cos 5 {cos K cos [f+(w)]-sinKsin [ f + ( w ) ] )  
a0 

r i 
2 a0 

-- sin [ , f+(w)] cos - sin K. 

- 

- 
=- cos [.?+(a)] cos - cos K 

- r ‘L 

an 2 
We now differentiate our original definition 

froni Equation 88, But we know from original definitions in Section 
I11 that 

X1=sin cos N ,  2 
and get 

- r 
- cos [.?+ (o)]= I ,  
a0 

(Equation 93) 

- 
dX, 1 i t l i  i d N  -sin r [.f+(w)]=m, (Equation 94) cos - - cos N-sin - sin N - 
t l t  -2 2 nt 2 d t  a0 

from which, using Equations 28 and 176, we get i cos 7i cos K-X,A 
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and we have from Equation 178 that 

But, since 
bn bn 
bd b$ r y=-- cos i (Equation 51) 

and 

(Equation 174) 

we can write Equation 180, after iiiultiplying 
through by d f / d E ,  as  

1 h,= __ ' , d l - p o 2 )  

1'= 7(1+ v), 
and 

so finally we have 

(1S1) 

The derivatives of thc other three A parameters 
are developed in precisely the same manner as 
was dA,/dE. The final forms they assume are: 

(183) 

(1 84) 

In  each of these four derivatives, cos i is expressed 
as 

cos i = A? - As2- AI2. (185) 

By inspection, we notice that these four expres- 
sions are set up in such a way that they allow 
iteration. Each derivative is expressed in terms 
of the A's themselves, and uses the series deter- 

mined in the previous iteriitiori for these A's. 
Also, i t  is readily seen that every component of 
the derivatives can be expressed as a trigonometric 
series in E and (0). No F's will occur anywhere 
in these derivatives. These are the find forms 
which are formally integrtited to obtiiin the new 
values of the A's in any iteration. 

h h  
h ho 

EXPRESSIONS FOR 2, -, AND v 

We have shown previously (Equations 135 and 
137) that the U' function can be separated as 
follows: 

W=E+T cos F+\k sin F, 

where E ,  T, and \k are series containing E and ( w )  

alone, and are thus independent of F. And we 
have also shown that 

If we set 

? = I + A ,  (1SG) 

we can write 

which gives 

Z + e o T = - l - ( l + A ) f 2 ( 1 - A + A 2 - A 3 +  . . .), 

Writing this in I I  form suitable for iteration we have 

A=-T 1 (E+e,T)+- 2 (A2-A3+A4- . . .). (1%) 3 3 

From Equations 136 and 186, it immediately 
follows that 

h 1 
-=lfZ (E+eoT+A) .  
ho 

(189)  

The series for W determines E and T. Then, 
from Equations 186, 188, and 189 the remaining 
quantities A, ho/h, and h/ho are found. This 
method of iteration is desirable in that it avoids 
the use of further integration to determine these 
series. Once the series ho/h and h/ho are found, 
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the perturbations of the radius vector v can be 
readily found from our original definition of @, 

- h, 2h0 1 JV=-1---+- ~ (Equation 125) h h l + v  

which, after substitution of h,lh= ( l + A )  can be 
written suitably for iteration as follows: 

(190) 
1 1 -r 

2 2 v=- ( A - F ) - -  (11 +A).. 

Again we are avoiding additional integration by 
the use of this iteration process. The series 
used in this iteration process is obtained simply 

by replacing the F’s by E’s in the series generated 
for W. 

We now have developed all the necessary 
expressions which are used in the theory. In  
Equations 173, 154, 181, 182, 183, 184, 186, 189 
and 190, we have developed series forms for 

dI4’ dn 6 dA1 dA, dXs dA, ho h 
d E ’ d E  d h  d h  dE dE h ho O ‘7 -,J 7 1  -1 -7 -1 -1 alld v ,  

respectively. Our next problem is to add the 
constants of integration which are determined in 
very specific ways ; the method of determination 
of these constants has led to much of the contro- 
versy and confusion circulating about Hansen’s 
theory. 

SECTION VI1 
DETERMINATION OF THE SECULAR MOTIONS y, a ,  AND ?I 

AND THE CONSTANTS OF INTEGRATION 
DISCUSSION 

I n  hlusen’s original paper (Reference 6) he 
points out that  the “real constants of integration 
are the six elements a,, e , ,  go,  Bo,  io, and u,=T,- go. 

It is understood that any theory which attempts 
to give the motion of an orbiting body in a disturb- 
ing force field requires a complete solution of the 
differential equations for the time rate of change 
of the six elements which define the orbit. The 
constants of integration of the set of six differential 
equations would clearly be some starting values 
of the six elements. In  Hansen’s theory, the 
diff erentinl equations of the elements are disguised 
and combined in the differential equations for 
W, no6z, and the A’s. Intuitively, therefore, we 
would expect the constants of integration of these 
new differential equations to be functions of the 
elements alone. This is another way of stating 
that Hansen’s theory introduces no new constants 
of integration, other than the elements. 

Musen’s nest statement is that these elements 
“do not have any simple kinematical or geo- 
metrical meaning; in particular, no moment of 
time exists for which these elements are osculat- 
ing.” The point here is that the “real constants 
of integration” are mean values of the osculating 
elements, which Hansen assumes to be known ex- 
actly. However, in practice, the mean values are 
never known as an  initial condition. 

The standard technique for determining them 
is to assume a set of elements a t  some time to, use 

11 

them to predict an orbit, and then to make an orbit 
correction assuming that residuals are a result of 
inaccurate starting values of the elements. Then 
by some correction device, new starting values of 
the elements are found and the process is repeated. 
In  general, the first approximation is the set of 
osculating elements determined by observation a t  
some time to. After several corrections, the values 
of the elements should converge to the “mean ele- 
ments” which are Musen’s “real constants of in- 
tegration.” However, since these elements do not 
appear explicitly in the constants of integration of 
our development, let us turn to the matter a t  Iiund. 

At this stage of the exposition, it behooves US 

to recall the basic ideas that have governed the 
development thus far. After having introduced 
an auxiliary ellipse into the osculating orbit plane, 
we established that the ellipse moves uniformly in 
this X Y  plane with respect to the eccentric anom- 
aly. That is, the perigee moves with an angular 
velocity y(dE/dt)  in the X Y  plane. The pertur- 
bations of the real satellite’s motion in the orbit 
plane are combined in the two perturbations, v 
and noSz. The perturbations of the orbit plane, 
that is, of the elements 8, a, and i, are contained 
in the four interdependent X parameters. By the 
way in which we introduced and defined the secu- 
lar motions y, a, and 7, we have established the 
following important condition: The four param- 
eters A l l  Az, A3, A4 and the two perturbations v and 
no& can contain no secular terms. The secular 
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niotions a and 7 iire defined as containing together 
all the secular iiiotions of u and e, and we 1- \now 
that  i physically hiis no secular motion. Also, v 
cleiirlj- has no secular iiiotion, and the secular 
motion of no6z is a11 contained in y. 

Since the developinent uses the iteration process, 
the above condition dictates the evduntioti of the 
various constants of integration. In  iiiost cases, 
if one of the above sis series contained t i  constunt 
term, integration of the series would produce :L 
secular term, which is not iillowed. This is the 
logic behind the determination of the sccular 
motions, and the arbitrary constants of integrti- 
tion. 

DETERMINATION OF 1~ 

Now let 11s examine eticli integral sepiirtitely. 
The first integration performed is that of dll’/dE. 
As was explained in Sections I V  and V, we filiiilly 

dII’/dE its a trigonotiietric series whose arguments 
are of ttie form [iE+j(w)+kF]. From the inte- 
gration of this derivative, we will be tilde to per- 
form the ittiportiint deteriiiinntion of y, t tie secular 
motion of tlir perigee. The condition that allows 
this result has been given: no6z c-annot contain 
seciilur ternis. 

The detertiiin;ition of the constiint of integrii- 
tiori of dl;l /dE is i~ result of the condition stated 
above, i ts well iis tlie iitlditiotid coriditioii t h t  
no& can coritiiin no term of the foriii sin E. This 
second condition derives sintply from the origind 
definition tliat no6z i .9 the dcciation of thr-. real .sat& 
lite -from Kepler’s equation, and Kepler’s equation 
already contains a sin E term. It should be 
einphiisizccl tliiit this is strictly ti result of tlie way 
in which no6: is defined. We will presently show 
that these two conditions dictate that the cotistarit 
of integratioti in 1.I’ be co+cl cos F. 

were iible to develop the differential equ, d t‘ 1011 

Thus, the final fortti of TI‘ is iis follows: 

Tt’=XFtXCz, j.k cos [ iE+2j(w)  +kFl 
i j k  

+XF,XS,. 

where k=-1, 0, +1. 
Tlie limits on k and the form of tlie coefficients 

of (0) are not arbitriiry but are purely results of 
the way in which various terms combine. The 
expression above is the general form of W in 
every iteration. We need to know this form 
before we c:in explain the determination of y. 

sin [iE+ (2j+ 1) (a> +kFl 
i l k  

+ c ~ + c ,  COS F,  (191) 

NOW, tis can be seen above, and in accordance 
with ttie condition that n06z have 110 secular terms, 
m’ is not allowed to colitairi any secular terms. 
Therefore, since the integration is performed with 
respect to E, all terms which have F illone in the 
argument must be removed before integration. If 
they were not removed, W would contain terms 
of the form (sin F ) E ,  a secular term. There lire 
no constant terms in dU’/dE, as will be seen by 
inspection of Equation 173, and so no secular 
terms arise from this source. We shall presently 
show that the only term of the series for dW/cZE 
which contiiiris F alone in the argument is of the 
form (Al+yA2) sin F where A, and AL are con- 
stants. Thus, y is determined in such i~ WiLy 
that this term disappears. 

To sliow that dW/dE contains a term of this 
form as the only term in F alone, we must examine 
Eqlliition 173 which is 

We know the following: 

1. Ttie quantities ~.(ba,Q/br) and bnoQ/bE are 
series containing arguments of the form 
iE+j(a) only, becwuse both tire the results 
of “barring” r(bQ*/br) imd bQ*/bE, tlitit is, 
replacing E’ by E. 

2. Also, IF and v iLre series in I!: nnd ( w )  done, 
since u’ is W with the 117’s replaced by E’s 
arid v is a function of W. 

3 .  Tlic quimtity Fluo= 1 - e ,  cos E. 
4. The quantity p/a,=l--eo cos E’. 
5 .  Tlie qiiiintities h,/h, h2/h,’, tirid l / ( l + v )  are 

series in E and ( w )  tiloiic since the>- iirc d l  
functions of F. 

TTe will now show that tltc products NAr(ba,Q/br, 
and MA(ba,Q/bE) ciin litLve only terms in i F  
alone, that is, no terms of i kF ciin appear with 
1k1>1. After this we show that NAr(ba,Q/br) 
and MA(du,Q/bE) cim contniri only sin E’ terms 
and can have no cos I;’ terms. 

Exaiiiining NAr(baoQ/br),  we can see froiit itettls 
2 and 3 tibove that A contains orilj- terms of E 
and ( w )  since 
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and we knowfromitern 1 that r(ba&/br) coritainsonly 
E and (a), not F. Furtherinorc, we know thiit A4 
and N contain teriiis of the foriii cos (mE+nF) 
where -a<rn<a and n=-1, 0, 1 (see Equa- 
tion 173). This nieiiiis no multiples of F other than 
-1, 0, 1 exist in terms of A4 and N. Therefore, 
it is evident that the product h'Ar(ba&/br) contains 
no teriiis with multiples of F other thiin - I ,  0 ,  1. 
Exactly the same nrguments can be used in the 
case of i44A(baoQ/bE). 

Having seen that no terms of ~rguiiients k F  
with In"l>l can appear in the first two teriiis of 
dU'/dE,  we want to show that only sin F terms can 
appear, and no cos F terms are possible. The 
proof of this rests squarely on two fiicts that :ire 
nscert;iined by close inspection of the series forins 
that go into D arid A.  This inspection shows the 
forms to be :is follows. (In these series expres- 
sions, C iind S represent only general coefficients.) 

D=xC C,,,cos[iE+2j(w)l + X Y l  S,.3sin 
1 3  1 1  

[ i E + ( Z j + I ) ( w ) ]  (See Eq11iition 118).  

The two partials of fi then are easily found to be of 
the form : 

af? 
br i j 

r -=CC ci, j cos [ iE+Zj (w)]  

and the series A can be expressed as 

A=XT, Ct,j COS [ i E + 2 j ( ~ ) ]  
i j  

+XY, Si,j sin [ i E + ( 2 j + 1 ) ( ~ ) ] .  

We know further from Equation 173 thiit If and 
N t,alte the general form 

i j  

M = C C  Ci,t COS (iE+kF) 
i k  

and 

N = C C  Sivi; sin ( iE+kF) .  
i f: 

Using these five general forms, we can see that 
the following general forms of the product series 

;ire produced: 

bU"D ATA~ --=E xx C, cos I iE + ( 2 j+  1 ) ( W )  + kF]  

+XXF, 8%. ) , h  sin [iE+2j(w)+kF] 
br 2 3 I, 

1 1  L 
and 

It is evident froiii these series forms that neither 
of the two terms can contain cos 3' teriiis since 
all cosine terms niiist idso hikve an ( w ) .  The sine 
teriiis ciin clearly be in F alone, but only k3', as 
we hive shown previous1.v. Thus, we h o w  that 
onlj- one term in the series for 

ba, D ba, D NAr - br -- +MA ~ bE 

can contain F illone, iind thiit teriii will be of the 
form A, sin F. 

Let 11s now exainine the third term of dW'/dE, 
that is, 

(See Equation 173) .  

We can esninine S alone, since y and eo  :we con- 
stants. First let us look a t  13'. We can show, 
by esninination of Equation 191 thnt 

W'-co+cl cos F+Periodic Ternis, 

but contains no terms other thim el cos E' which 
have F alone in the nrgument. We kiiow this 
because all such terms tire removed from dl1'jdE 
before i t  is integrated. The el cos F term is part 
of the added constant of integration. From this 
fact we know that 

bw el sin F+Periodic Teriiis, 

again containing no terms in F alone other than 
-cl sin F. 

T F = -  

So we see that, since 

the first term of S, 
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can be writ ten 
- 

(1 -eo cos F) ( -e1 sin li' p bW 
&aF= 

+Periodic Terms in E and F )  
1 
2 

- --e, sin F+- Cleo  sin 2F 

+Periodic Terms in E and F. 
The second term of S is 

( w + I + ~ )  e, sin F=Weo sin F+eo sin II' 
fX h, e, sin P 

=eoeo sin F+cleo cos F sin F 
+eo sin F+Periodic Terms in E and F,  

Therefore, S becomes since h,]h is a series in E. 
S=[-cl-eo(co+~)] sin F 

S O ,  

+Periodic Terins in E and F. 

+Periodic Terms in E and F, 

-A2 = [e1 +eo (eo + 1) Id-. 
Thus, from Equation 192 we are able to see that 

proper adjustment of y leaves dW/dE with the 
desired periodic terms in E, (a), and F. We now 
turn to the constant of integration problem. 

(192) 
where 

CONSTANT OF INTEGRATION OF W 

As we have stated before, the condition that 
dictates the form of the constant of integration in 
W is t,hat no8z is defined to be the deviat,ion from 
Kepler ' s  equation : 

E-eo sin E=go+no(t-to)+n,6z. (Equation 75) 
Therefore, since a constant term, a secular term, 
and a term of the form sin E all appear in Kepler's 
equation, none of these is allowed in no& 

Returning to the differential equation (Equa- 
tion 154) we have 

which after minor rearranging can be written 

(193) 

From this equation, we can derive a form con- 
venient for the use of the iteration process. I n  
any given iteration loop, the factors and the terms 
in parentheses are all of the previolls iteration, 
with the exception of y which is the latest value 
found. For in the first term on the right-hand 
side of Equation 193 we ((bar" operate on Equa- 
tion 191 and get: 

W=c0+cl COS E+F,Y,C,,, cos [iE+2j(w)] 
- 

1 3  

+7,XS t , j  sin [ iE+(2j+l)(a) l .  (194) 

I t  should now be clear that we set the form of 
the constant of integration in W to be co+cl COS F 
in order that we could use it to remove the con- 
stant terms and the cos E term of the series for 
dno6z/dE. If not removed, these terms would 
give secular terms and a sin E term after integra- 
tion. Thus, c, and c1 arc set in such a way as to 
make the terms disappear before the integration. 

The subsequent expressions for eo and c1 are 
obtained as follows. Since we are using previously 
generated series for the terms in parentheses in 
Equation 193, and the new series for in the 
term (ria,), we have: 

i 3  

dno6z 
dF: 
-- -(co+c1 cos E)(l-eo cos E )  

+-s CiJ cos [iE+2j(w)] 
i j  

since 7]uo=l-eo cos E. BJ- means of the stnnd- 
ard trigonometric identities, Equation 195 becomes 

dno6z 1 1 
-- dE ~ ~ 0 - 5  Cleo+ (cl-c,e,) COS "-2 cle, cos 2 E  

The two conditions that the constant terms and 
terms of the form cos E m u s t  be eliminated dictate 
that 

c,-- cleo+Co,o=O (197) 
1 
2 

and 
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And a further consequence is that the coefficient 
of cos 2 E  in Equat,ion 196 must be added to the 
coefficient C2, of the series. From Equations 197 previous iteration.) 
and 198, we are able to write 

out again that in Equations 201 and 202, the x’s 
that appear on the right-hand sides are A’s of the 

If we let 

(199) 

b,=constant part of xl, (204) 
and 

and 
(200) b2=constant part of T( -A3Z -A4m), (205) 

cl=- (2eRo ,o+~G,~)  __ 
2-eo 

[Note: These values can also be found by itera- 
tion. See Appendix B, steps 61-67.] 

Putting these values into the series (Equation 
194) gives a final series form of m. We now are 
able to write that  dnoSz/dE consists of periodic 
terms only. When dno6z/dE is integrated, the con- 
stant of integration in no& is set equal to zero, as 
a result of the condition that  no& contain no con- 
stants. And so we are able to develop series for 
W and no& for each iteration. We now must 
turn to the secular motions CL and q and the con- 
stants involved in the integration of the ?, differ- 
ential equations. 

- 

DETERMINATION OF a AND 7 

The differential equations for the A’s, Equations 
181 through 184, provide an easy determination of 
CL and q. Recalling that the x’s were defined in 
such a way that they contain no secular terms, i t  
is a t  once clear that  the derivatives can have no 
constant terms. The expressions for dA2/dE and 
dA3/dE are especially convenient here. They are 
given by  

We know that the series for AI and A4 contain con- 
stant terms, qince the first npproyimntions to k, 
and A4 are sin (i&) and cos (i0/2), respectively. 
We also know, from the way they are defined, that  
A2 and A3 can contain no constant terms. The 
first approximations are Az=A3=0.  (We point 

then we remove the constant part of tdA,/dE by 
sett’ing 

I n  a similar manner, taking the expression for 
dA3/dE, Equation 202, and letting 

and 

we have 

h3=constant part of T ( X Z Z + X , ~ )  (207) 

b4=constant part of A4, (208) 

We now are able to integrate formally all the 
A derivatives. Upon integration, we are able to 
set the coustants of integration in Az  and A3 equal 
to zero, since our conditions dictate that  kz and 
A3 contain periodic terms only. I t  is a little more 
involved to find the arbitrary constants in A1 and 
A4. Two further conditions must be satisfied, and 
these govern the arbitrary constants in AI and Aq. 
They are: 

1. That A ~ 2 + A 2 2 + A 3 2 + A 4 2 = 1 .  (See Equation 
89.) 

2 .  That  the principal term in the latitude must 
have the form sin io sin [ 7 + ( w ) ] .  (See 
Equation 87). 

Since we had the form of the latitude 

+2(A1A4-A2A3) sin [.7+(w)1 

+(2A2Aq+k1A3) cos [f+ ( w ) ] ,  (see Equation 91) 

condition 2 dictates that  the constant part of 
2(X1Aq-AzA3) be sin io. 

Now, we hiive stated previously thtit parts of 
the conqtwnt terms of AI nnd A 4  nre t he  first npprox- 
imationss, in (i$) and cos (i0/2), respectively, 
and we know that neither A, nor A4 can contain 
secular terms. Let us arbitrarily pick a form for 
the constants of integration which will enable us 
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to satisfy the two conditions above. 
the final forms of XI arid A,: 

We write 

(210) 
1:" 1 X1-sin -+- (A- B)-1 6Xl ,  2 2  

where in final forni, 
X2=6X2, (216) 

Taking the final fornis of the X's (Equations 210, 
211, 216, a n d  Z I T ) ,  wc applyv tlietii into tlic two 
conditions 

(218) 
and 

X12+ X*2+ X32+ A?= I 

constant part of 2(X1X4-X2X3)=sin io. (219) 

In  this procedure we must remember that even 
though X2 and X3 do not contain constant terms, 
their product terms will. The following results 
are obtained by setting the constant parts of 
each side of Equations 218 and 219 equal, and 
by setting the periodic parts of each side equal. 
Clearly, in this manner, the periodic parts vanish 
from the equations and we have the forms from 
which AI2 and B/2 are determined. 

Aftcr iiiaking the substitutioiis, we find tha t  

+[coiistant part of 2(6X16X4-6X26X3)]=0. (221) 

Solving Equations 220 and 221 for A and B, we 
get: 

+constant part of 

[ (&A,  +6X4)L+ (6X2--6X3)q= 0 (222) 
and 

7 2 G B2-2U cos 2 - s h  -! +constiiiit part of 

It is preferable to solve for A and B by iteration 
rather t h a n  by the  qii;itlriitic nietliod, so we re- 
write Equations 222 arid 223 :is 

(225) 

where H and G are the bracketed terms of Equa- 
tions 222 and 223, respectively, m d  the A/2 and 
B/2 used in the right-hand sides are the vdues ob- 
tained in the previous iter' '1 t' ions. 

We have now described coinpletely the tech- 
nique and reasoning used in the determination of 
the secular motions y, a, and q, and the constants 
of integration in W, no 62, and the four X's. These 
six formal integrations are the only ones which are 
performed. All other determinations use the iter- 
ation process, as we have shown. The next sec- 
tion attempts to outline in detail the entire pro- 
cedure used in the generation of the final series 
forms which w e  used in the eventud predictions. 
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SECTION VI11 
PROCEDURE USED IN THE GENERATION OF FINAL SERIES FORMS 

DISCUSSION 

In the preceding sections we have developed 
explicit expressions for all the equ:ttions which 
must be solved in the problein. I t  is now possihle 
to  discuss the entire procedure for the generation 
of final series foriiis, using the various expressions 
f 01111 a. 

It is important to eniphtisize one point. 
Throughout the process of iterntion, our goid is to 
ascert;iiii find, “good” series expressions for tlie 
following functions: no&, Y ,  X,, Xz, As, and X4. 
We start out with apprositnations to these series 
as follows: 

no6z=0, 
v = o ,  

Xz=O, 
X,=O, 

i 0  x4=cos -. 2 

. l o  X1=sin - J  2 

Out of the iteration process, we eventually 
converge to series which express :iccur:itely these 
six functions tis functions of the eccentric ~ ino i i id~-  
of the fictitious satellite E arid the iiie2in argument 
of perigee ( w ) ,  which is in turn t~ function of E. 
Out of the process coiire ttie three secular tirotions 
y, a, tind ?I. C’oriceptuall?- speiiking, the entire 
prowdure is one of separating all secu1:ir iiiotioris 
froiii the periodic niotions. Thus, series :ire 
generated Tvliicli give the iiiotion of the fictitious 
satellite (is defined, and give the reltitionship 
between the two coordinate systems. And so, 
ttie f ind value of y uiid tlie f ind series form of 
no& provide that  all the periodic angular pcrturbn- 
tions of the satellite in the orbit plme are eon- 
tained in tlie mean tinonitil>-, nnd tlie secullir 
motion in the plane due to disturbing forces is 
contained in the secular niotion of the perigee. 

We must reinember, therefore, a l’uct that is 
often overlooked and consequently is the cause of 
consternation in studying this theory. None, 
absolutely none, of the series is evaluated until the 
final series forms are deteriilined after several 
iterations. Only the coej5cient.s of the trigono- 
metric terms are calculated; the terms themselves 
are not, but are carried along throughout the itera- 
tion process. The iteration process is used to 

arrive a t  final series fortiis espressed with iiumeri- 
cal coefficients inult iplying trigon otn et ric t en 11s ol‘ 
indexed argutnents. Once the final series are 
developed, we go into tlie find stage where we can 
predict the position and velocity vectors of the 
real satellite :it soine future time t .  Thus, there 
are two niajor phases of tlie tlevelopiiierrt: the 
generation of final series forms, ancl tlie c:ilculatioii 
of position ancl velocity at various times. 

The first of these phases 1i:is been written as n 
machine program by G. E. Collins of IBM, in col- 
laboration wit ti Paul Herget of tlie C’incinnati 
Observatory. I ts  IBM code n:me is the General 
Ob1:it eiiess Perturbations (GOP) program. The 
second phase, consider:hly more straightforward 
th:in the first, has been written 21s :L program by the 
IBM Space Computing (’enter m t l  is known :LS tlie 
I l i IST progrmi. Sow, let us trtice through tlie 
procdure used in t tie first ol‘ these two phases. 

For rrny given satellite, we iiiust begin with 
noininal values of the three elernelits a,  e ,  and i. 
The theory calls for “1ne:iii” vdues of these oscu- 
lating elements, which we mill assume we have. 
In actuality, these are deterniined by starting with 
nominal values, predicting an orbit, running an 
orbit correctioti, and then correcting the values of 
a,  P, and i used. But let us say we have good nu- 
merical “mean” values of a, e ,  and i which we 
designate as ao, eo, and ;O. Only these three ele- 
ments are neetled in the developiiient of the series. 
We also need values of the three geodetic param- 
eters k2, k ~ ,  and kq. Nest, we need the following 
first series approsiiiiatioiis, each of mhich is used 
in u u  iteration process: 

I . io. no6z=0; X1=sm --, 
2 

J A=O; 
v=o;  

and we need first approximations to the constants, 
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The first step is to develop the series for dU’/dE. 
This involves the partials bn*/bF and r(bQ*/br) 
which are readily found, once a* is developed in 
ternis of +*, where the A’s are those listed in 
Equation 226 for the first approximation, after 
which the liist series obtained for the A’s lire used. 
Taking Equ;ition 173, 

we see that N and A I  contain h/ho and l/( 1 + v) , SO 

we niiist USC the series forms obtained in the previ- 
ous iteration. The slime is true of the v, U’, and 
hO/h tlint appear in A and S. And finally, we see 
that y appears twice in dUr/dE;  a s  n coefficient of 
S i n  Equation 173, arid in the expression for A. In  
the expression for A, the value of y previously 
determined is used, whereas the y multiplying S 
is the y to be determined by the removal of sin F 
terms froni dM’/tlE (see Section VII). 

Once dl.l’/ciE is determined and the sin F terms 
are reiiioved, it is forinally integrated arid the con- 
stant of integr:ition co+c, cos F is added. Keep- 
ing co and c1 urideterrnined as yet, we “bar” the 
new series for u’ to get W wliich has now the 
terms co and c1 cos E. 
availiible, with co  and c1 still undeterniined, we 
turn to our expression for dnoB~/dE’ 

Keeping this series for 

(Equation 193) 

Into this expression we put the v series deter- 
rnined in the previous iteration (or, in the case of 
the first iteration, v=O). In the term in paren- 
theses, we also put for the series determined 
previously. The y is the number just found prior 
to the integration of dW/dE. Then, in the first 
term, m ( F / a o ) ,  we put the series just deter- 
niined and find co and c1 so that no constant ternis 
or terms of the form cos E appear in dnoSz/dE. 
The expressions for co  and c1 are given in Equa- 
tions 199 and 200. With co and cI evaluated, we 
forrridly integrate to get the series for no&, which 
contains no additive constant of integration for 
retisons given in Section VII.  We now also have 
the new series for U’ and 3 since co and c1 have 
been determined. 

Our next step is to t&e the new series for W a n d  
write it in the forni, 

W=Z+T cos F+* sin F. 

This is accomplished by scanning the series W 
and first picking out all the terms which have no F 
in the argument, a series we call E .  Next we iire 
able to find T by putting F=O in all the terms in 
which F occurs. It should be reinembered that k 
only takes on values of - I ,  0, I in the series for W 
(Equation 191). This splitting process simply uses 
the trigononietric identity for the sine or cosine of 
the sum of two angles. With the series for Z and 
T determined, we turn to our equation for A 

1 2 
3 A=-3 (Z+eoT)+- (A2-A3+ . . .). 

(Equation 188) 

Using the vdue  of A of the previous iteration, or 
for the first iteration A=O, in the right-hand side, 
we solve to get a new series for A. I’roperly, for 
any iteration, the expression shoiild be written 

1 2 
A n + , = - s  (Z+e,T)+, (An2-An3+ . . .). (227) 

In ;iny given iteration of tlie whole progr2in1, that  
is, w h ~ n  new series for M‘, II’, nd:, et(.., :ire found, 
we iterzite iiround Equation 227 n times, until 
lAn+l-An[  < E  where E is soiiie lirbitrtirily chosen 
sniiill number. This A n f l  is the A to be used in the 
detertiiination of h/ho, ho/h, iind v. 

With the A series deteriiiinect, ;md with the Z 
and T series used above, h o / h  and h/ho are found 
siiiiplj hy substitution in 

3 

h” % = l + A  (Equation 186) 

and 
h 1 (A+Z+e,T).  (Equ;it,ioii 189) 
h0 

These series for ha,%, h/ho, and A are then put aside 
with U’md no& for use in theriext overall iteration. 
The last series to be found is that for v, 

- 
(U +A)v. (Equation 190) v = -  1 (A-nT)-L 

2 2 

We use the same type of iteration of this equation 
that was used to find A. Here, the A used is the 
one just found and stored, and E is simply tlie 
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last E determined. 
properly be written 

Again, the expression should 

where n is the number of the iteration of the 
above equation. The series v, originally put on 
the right-hand side is that  determined in the last 
iteration of the whole program. 

THE X DERIVATIVES 

We can now turn to the computation of the 
X series and their constants of integration. Taking 
the expression for dXJdE as an example, we can 
illustrate the procedure used in all the four 
derivatives (Equations lS l  through 184). Thus, 

It is readily seen that the factor 

occurs in each of the four derivatives. This factor 
is developed using the h/ho series determined in 
the previous iteration, not the one found in the 
steps immediately before this. We use the previ- 
ous series to assure consistency through the overall 
iteration process. The dQ/d+ was found by oper- 
ating with the “bar” operator on dQ*/b+* and 
cos i we have noted to be 

cos i = X i 2  + X? - X22 - X12, 

where the X’s are those resulting from tlie previous 
iteration. The A factor is the same as that used 
in the formation of dWIdE. As was true of the 
X’s that occurred in the expression for cos i, all 
the other X’s on the right-hand side of Equation 
229 are those of the previous iteration. This 
leaves only M undetermined. 

The determination of M and 11 was described in 
Section VII, on the basis that  dX21dE and dX,ldE 
must contain no constitnt terms. In  any itera- 
tion, CY and q are determined as described before 
any of tlie X derivatives are integrated, since the 
expressions contain the value of cy or q just deter- 
mined. Thus, dX,ldE arid dX3/tlE are formed 
before dX,ldE or dh,ldE. Once M and are 
found, the four derivutives are formally inte- 

grated. No constants of integration are added 
to X2 or X3, for reasons previously discussed, so 
the integrated forms are stored as the new Xz 
and X3. 

The constants of integration added to 

have also been discussed previously. 
are 

The forms 

Jg’ (231) 
xl=siii ”+- i 1  (A+B)+ -l 

2 2  

where A and B are determined by iterations of 
Equations 224 and 225. As was described in 
Section VII, H a n d  Gin the latter tire functions of 

beiore the constants of integration are added. 
The iteration process is to be handled in exactly 
the same nianner as in the cases of A and v, so 
we could write Equations 224 and 225 as 

-“-(+>2 
An+l- 4 -_ 

i i ’  cos -!+sin 0 2 2 
2 

G B 2  
B,+l ___- -~ 4+(2.’) . .  

i” 2 ,  cos --sin - 2 2 
2 

After the iteration process gives convergence to 
some A/2 and Bj2, the new XI and X4 series are 
given by Equations 231 and 232. 

We have now traced through one entire iteration 
of the first phase of the solution. We have gene- 
rated in this iteration new series for W, m, noS2, 
ho/h, h/ho, v, A, X1, X2, X3, and X4. We have also 
evaluated new values of the constants y, LY, 11) 
A/2, and B@. With the iteration complete, the 
test for convergence is made with the secular 
motions. If 

IYn+l-Ynl  < E ,  

IMn+I-CYnI<~,  

I t n+ 1 - 11 ILI  <E, 

and 
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(where E is some arbitrary small number) the 
series are considered to have converged. If not: 
the entire process is repeated as outlined. This 
completes the description of the first phase, that 
incorporated in the IBM program lulown as 
GOP. Appendix B has been included as an aid 
to those interested in the programniing of this 
development. I t  lists one possible niethod of 
attack but does not represent the only valid 

coniputational procedure. As ctin be seen from 
Appendix B, this prograin develops the x’s before 
it finds the series for h,/h, h/h,, and V. This order 
is preferable in tliut the h/ho series used in the A’s 
is that of the previous iteration, as discussed 
earlier. 

We next turn to the second phase of the solu- 
tion, that  of producing a position vector of the 
r e d  satellite a t  certain values of t .  

SECTION IX 

DETERMINATION OF FINAL POSITION AND VELOCITY VECTORS OF THE REAL 
SATELLITE AND ITS OSCULATING ELEMENTS 

INTRODUCTION 

The entire development thus far has  led us to 
series which express exactly the perturbations of 
the real satellite and the motions of the orbit plane 
as functions of the eccentric anomaly. We now 
turn to the second phase, the determination of the 
position vector as a function of time. We know 
the motion of the fictitious satellite to be given by 

?; sin f=ao J l - e ;  sin E 
and 

r cosf=a0(cos E-eo). 

Also, we know the relationship between T and i: to be 
T= (1 + v ) 7 ,  

and the relationship between the eccentric anomaly 
E of the fictitious satellite and the real time t of 
the real satellite to be in Kepler’s equution 

- 
- - 

E-eo sin E=!go+no(t-fo)+no6z. 
Thus, we are in a position to find tlie radius vector 
of the real satellite in the rotatirig X Y Z  coordinate 
system. However, we liave to perform a rotation 
operation in order to express the position vector 
in terms of zyz coordinates, that is, inertial co- 
ordinates. 

THE ROTATION MATRIX 

The X Y Z  system has been rotated through 
three angles with respect to the zyz system. 
If we rotate the position vector through these 
same three angles with respect to the xyz system, 
the new components in tlie X Y Z  system are the 
same as those of the nonrotated position vector 
in the zyz system. Therefore, if we can find a 
rotation matrix operator which expresses the 
rotation of X Y Z  with respect to zyz, we can oper- 
ate on i with i t  to get r in the inertial system. 

One important thing to note here is that, for 
purposes of developing this matrix, we want to 
rotate our X axis from the 5 axis to the line in the 
plane of the orbit, from the origin to the perigee. 
This allows us to express F in the X Y Z  system in 
two components :  7 sin J and 7 cos whereJ 
is the true anomaly of the ellipse, that is, the 
angle between the position vector r and the line 
from origin to perigee. 

Therefore, to rotate from the zyz inertial, or 
equatorial system, into the X Y Z  system where 
the X Y  plane is the plane of tlie orbit, and the 
X axis goes through the perigee, we rotate through 
three angles. Starting with the X ,  Y ,  and Z 
axes lying along the x ,  y, and z axes, we first 
rottLte the X I 2  system about 2, througli the 
angle 0. This leaves tlie X axis lying along the 
line of tlie nodes. Nest we rotnte the XY plane 
about X ,  through an angle i, putting tlie X Y  
plane coincident with the orbit plane. Finally, 
we rotate the T and y axes about Zagain, until 
X passes through the perigee. Clenrly, this 
final rotation is through an angle (ao+yAE--). 

A rotation about the Z axis through an angle a 
is given by 

cos a! -sin LY 0 

and a rotation about the X axis through an angle 
B is 
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Therefore, our total, or triple rotation, desig- to express A3[K--N]Al[i]A3[K+N] as one matrix 
nated by r , is clearly: We shall call this in terms of xl, k2,  X3, and x4. 

matrix G. 
Making the transform‘ ‘i t’ ions r =A3[e]Al[i]A3[7i-o+ YAE- u]. 

But from Equations (sa), (85), (71), (83) and (86) 
we know that {K-AT=2a) or { K=a+/3} 

1 e= (e) -N+K and (ao+yAE-u)= (u)+N+K, K+N=2/3 N=/3-a 

~ = ~ 3 1 ~ ~ ~ 1 ~ 3 ~ ~ - ~ 1 ~ 1 ~ ~ 1 ~ 3 ~ ~ ~ + ~ 1 ~ 3 ~  ( W ) l ,  G=A3[~~lAl[~lA3[2~1. 
so we write we have 

knowing that I~~[LYI+(Yz]=A~((Y~)A~((YZ). We wish This is given explicitly by 

1 cos 2a cos 2/3-sin 2a sin 2/3 cos i -cos 2a sin 2/3--sin 2a cos 2/3 cos i sin 2a sin i 

sin 2a cos 2/3+cos 2a sin 2/3 cos i -sin 2a sin 2/3+cos 2a cos 2/? cos i -cos2asini 

sin 2/3 sin i 1 cos 2/3 sin i 1 cos i 

which we write tis 

Throughout the following development, of the 
Am, ,, terms, we use the definitions 

i i 
2 2 X1=sin - cos N, X ~ = C O S  - sin K ,  

i i 
2 2 X2=sin - sin N ,  X4=cos - cos K ,  

and 
K=a+/3, 

N=P--CY, 

X1=sin - cos @-a), 

and we have 
i 
2 

i 
2 Xz=sin - sin @-a) , 

a 
2 X ~ = C O S  - sin (@+a) , 

z 
X ~ = C O S  - COS @+a). 2 

XI1=cos 2a cos 2P-sin 2a sin 2/3 cos i 

=[sin2 (:)+cos2 (f)] cos 2a cos 2p 

-[cos2 (;)-sin2 (f)] sin 2a sin 2p 

or 
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We now have our r matrix 

which represents the transformation of coordi- 
nates from the osculating system to the equatorial 
system. Consequently, we will get the position 
vector in the equatorial system by the operation 

L 0 

since U,(COS E-en) and a, sin EI/l-eeo2 are the 
components of F in the X and Y directions, 
respectively, considering X to be along the line 
from the origin (focus) to the perigee. Once 
the r ,  y, and z components of r tire known, any 
other coordinates of tlie satellite can be readily 
found by elementary trigonometry. 

DETERMINATION OF r FOR A GIVEN t 

It is immediately evident from Equations 235 
and 236 that we can find r for any E if we know 
a,, e,, and E, sirice we have series for v and the 
A’s in terms of E and ( w ) ,  where 

(W)=Wn+ ( 7 ~ +  a-q)E- (?J+ o~-q)li’o. 

We need e, in tlie r matrix, wliere 

A3[(6)lrA3[00- (a+ V)E+ (a+?l>Eol. 

We have already found the final values for y, a ,  
and q. However, to get the components of the 
position vector a t  some time t ,  we must deter- 
mine the value E which corresponds to that time 
t .  As well, to evaluate any of the series, we need 
to know the value E, which corresponds to to. 

We proceed as follows: Taking Kepler’s equa- 
tion, we find tlie E,, a t  to by iteration. I n  this 
case, Kcpler’s equation gives 

Eo--eo sin Eo=~o+no(to-t,)-I-no6z, (237) 

where yo, the mean anomaly a t  the epoch, must 
be given. In  the first iteration, we solve Equa- 
tion 237 by letting no6z=0. This gives US a 
value Eo, which we immediately put into the 
series generated for no&: 

no6z=Fourier series in 

which becomes 

nn6z=Fourier series in [iE,+jw,]. 

Taking the n,6z, a numerical value, and putting 
i t  back into Equation 237, we solve to get the 
second approsirnation to E,, which we put back 
into Equation 238 for a second approximation to 
no6z. We repeat this iteration process until 

a t  which point we t:ilie E, to be known for t=to. 
Next, we turn to some time t for which we wish 
to linow the position of the real satellite. Turn- 
ing first to Kepler’s equation, in the first alppros- 
imiition we let 7r06z=o nrid solve for E. Then, 
we put E and E, into the series for no6z and solve 
for a numerical value, which we then put into 
Kepler’s equation to solve for a second value of 
E. We continue in this iteration process until 

I E n + l - E n l  < E .  

Once we have determined the value of E 
corresponding to t ,  we tire able to compute 
numerical vdues for A,, Az, AB, A,, (I+Y), and can 
find (0) nnd (6) :is well as a,(cos E-e,) and 
a , f i o 2  sin E. Thus, we can easily put all 
of these vdues into Equation 236, and the com- 
ponents of the radius vector of the real satellite 
in the inertial coordinate system will emerge. 

DETERMINATION OF THE VELOCITY VECTOR 
AND OSCULATING ELEMENTS AT TIME t 

Bailie and Bryant have published (Reference 9) 
the method by which the velocity vector of the 
real satellite and the osculiiting elements a t  some 
time t are determined. The relationships follow 
directly ant1 simply from the development dis- 
cussed here. 
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Recalling that the W function was split up to 

(Equation 135) 

(&)=$2(k1X4$XZX3) sin (8)-2((x2X4-X1X3) cos (e ) ,  
(R,) = - 2  (XlX4+  XzX3) cos (e) - 2 (X2X4- X1X3) sin (e), 
(EP) =x:+x32-x22-x12. 

give 
W=Z+T cos F+\k sin F, 

Bailie and Bryant define the two quantities 
After some straightforwiird analysis the fol- 

lowing results are obtained giving the velocity 
vector Y of the real satellite and the osculating 
elements in terms of p, y, the components of P, Q, 

p=eo+h h, ( 1-e +)T, (239) 
and 

hoJ1-e: \k. (240) and R, ho/h,  h/ho, and the A’s: Y=h ___ 2 
s i n E  &-fz 1 

1-eo cos E ho 
1 r -  Further, they use the components of the r 

rotation matrix written as 

L ( m  (QJ (wJ 
where (P2) ,  (&), etc., are the components in the (243) . . . I  

inertid system of unit vectors P, Q, and R. The 

directed toward the perigee, R is normal to the 
unit vector P is in the osculating plane arid is 

plane, arid Q=RXP. 

e = d F T 7 ,  (244) 

(245) 

(246) 

(247) 

tan i= J(PJ+ (&2 
Bailie and Bryant give the components as: ~ 4 2 +  ~ 3 2 -  ~ 2 2 -  ~ 1 2 ’  

P(PZ) +r(&z> 
p(&2)-Y(Pz)’ 

(PJ (&J - (&A (Pz). 
U ) Z )  ( & 2 )  - (&Z> (1’2) 

(pz) = + 042- A?) cos [ ( w )  + (e )  1 - 2X3X4sin ( w )  + (e) ]  tan w= 

+ ( ~ ~ ~ - ~ 2 2 )  COS [ ( m i -  ( e ) ]  
-2X1X2 sin [(.)-(e)], tan e-= 

And from the oscuhting value of the eccentric 
anomaly 

= + (A?- sin [ ( w )  + (e ) ]  +2X3X4 cos [ ( w )  + (e) ]  
- (XI2- XZ2) sin [ ( w )  - (e)] 

-2x1x2 COS [ ( W )  - ( e ) ] ,  e tan 2-y E e-0  

l+“-Pd- Y tan 
(PA= f 2 ( X 1 X 4 - X 2 X 3 )  sin (w)+2(X2X4+X1X3) cos ( w ) ,  E tan E,,,= 2 E’ (248) 

( Qz) = - (A?- A?) sin [ ( w )  + (e)] - 2X3X4 cos [ ( w )  + (e ) ]  
- (X12-X2’) sin [(a) - (e)] the osculating mean anomaly M is found in 

-2x1x2 COS [ ( W ) - ( e ) l ,  Kepler’s equation: 

(Q1/)= + (X42-X~2)COS[ (W)+  (8)1-22~,~~sin [ ( w ) +  (e)] M=EoSc--e sin E,,,. (249) 

- (A+ ~ ~ 2 )  COS [ ( W )  - ( e ) ]  The components of the three unit vectors are 
easily arrived at ,  but are given explicitly by Bailie 
and Bryant, in terms of the four X parameters and 
the mean values ( w )  and (el. 

+2X1Xz sin [(a)-(O)l, 

(QJ= +2(X1X4-X2X3) cos (w)-2(XzX4+X1X3) sin ( w ) ,  
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SECTION X 
EVALUATION AND CONCLUSION 

This theory contains ccrtnin areas in which 
trouble may arise for particular values of the ele- 
ments. The three areas of difficulty in this theory 
are (1) small eccentricity, (2) large eccentricity, 
and (3) an angle of inclination in the neighborhood 
of the critical angle. 

SMALL ECCENTRICITY 

The first of these difficulties is not a weakness 
of the theory itself, bu t  rather of the way in which 
i t  has been adapted for machine use. We recall 
that in the determination of the secular motion 
y, the technique involved was that of finding y 
such that no sin F terms appeared in the series 
for dW/dE. We solved an equation for y (see 
Equation 192): 

AI + yA2 = 0, (250) 

where A, and A2 are numerical values of coeffi- 
cients. Upon close inspection of the explicit 
expression for dW/dP, i t  becomes evident that 
this equation can also be written as 

or 

since the eccentricity appears explicitly in the 
coefficients which are summed to give A,: 

AI= ( e n ~ l + e ~ ~ z + e ~ ~ u , + e o ' 7 ~ l +  . . .) sin F. (252) 

From the last term of dV7/dE (see Equation 173), 
we see that 

The difficulty arises, not specifically from the 
appearance of en in the denominator of Equation 
251 but from the fact that in Equation 252 the 
machine is adding a series of very small numbers 
during which process a large error can accumulate. 
When this sum is divided by a small number, 
eoAi, the accumulated error is greatly magnified, 
and can easily exceed error limitations. An edu- 
cated guess as to tlie lower limit of the eccentricity 
would be on the order of 0.001. 

A2=eoA: sin F. (253) 

LARGE ECCENTRICITY 

The problem with large eccentricities is that the 
series for ao/p and a,/? converge very slowly, 

1- 

owing to the presence of the factor 2/.\ll-eo2: 

an- - --=====(:+Pcos 2 F+P2cos2F+ . . 
P l / l -eo 

(Equation 108) 

It would be desirable to have different series ex- 
pansions for ao/7 and aofi for large eccentricities. 
It is impossible to find one series expansion which 
will give reasonably fast convergence for the entire 
range of eccentricity, O<eo<l.  Also, the factor 
l / ( l  -eo2) appears in the development, for example, 
in the M and N factors of the derivative of W. 
The factor places a limitation on e o .  The numeri- 
cal procedure described in this development is not 
satisfactory for eccentricities larger than approxi- 
mately 0.90. 

THE CRITICAL ANGLE OF INCLINATION 

It is u physical fact involving the particular 
oblateriess of the earth, that a t  some angle of 
inclination in the region close to 63.4 degrees the 
forces disappear which gives rise to the secular 
motion of the perigee of B satellite. This is a 
result of obliiteness symmetry with respect to a 
plane passed through the earth a t  this angle to the 
equator. The angle will vary slightly from 63.4 
degrees depending upon tlie geodetic parameters 
used in the potentid function. But, nonetheless, 
there is some angle : L t  which the secular motion 
of the perigee vanishes, or, in our notation, 

y+a-?l=o. 

This lends to n problem priimtrily in the integration 
of the series dn,Sz/dE; the same problem is present 
in all the integrations, but in those of d W / d E ,  and 
dX/dE,  the coefficients of the terms involved are 
very small and the difficulty is not readily ap- 
parent. We recall the series dnoGz/dE is of the 
general form 

+Si, sin [iE+ (2j+ l > ( ~ > l  I. 
(Equation 195) 

If we take the term of the series where i = O  and 
j=o,  we have the sin ( w )  term, where we know 

( W ) = W J + ( Y + a - ? l ) A E ,  
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with AE=E-E,. 
respect to E, that is, 

So we must integrate with 

sin (w)dE= sin [wo+(y+a-q)E 

- (y + - rl)EOldE, 
S S 
which gives 

cos ( w )  sin (w)dE=--------. 
y+a-q 

I t  is evident that  this term becomes meaningless 
when (yfa-q)+O, as it does a t  the critical angle. 
This renders the theory unsatisfactory in a very 
small region about the critical angle. 

We see that the term sin ( w )  is actually a very 
long period term in the region, and a constant a t  
the critical angle. It might a t  first seem possible 
to separate the constant part of the term from 
its periodic part, but the periodic part would have 
to be considered secular and disallowed first order 
secular motions would result in the X parameters. 
This weakness in the theory seems to be inherent 
and unavoidable. 

I n  the other integrations, these long period terms 
are of a very small magnitude, and the limitations 
due to series truncation have thus far made it 
difficult to evaluate their significance. 

ACCURACY 

The theory, as stated in the introduction, is an 
exact one, which includes all orders of perturba- 
tions. The accuracy is that of the geodetic param- 
eters kz, k3, and k, in the potential runction. 
However, in practice the accuracy is greatly 
affected by the truncation of series and the number 
of significant figures carried in the machine. The 
great number of series multiplications taxes the 
storage capacity of even the largest machines, so 
the question of series truncation is a serious one. 

[UNITS 

It has been found that the Viinguard system of 
units is quite satisfactory in this development, 
although by no means is it the only valid system. 
The theory can use any system so long as i t  is used 
consistently throughout. The Viinguiird units 
allow that the product of the mass of the earth and 
the universal gravitational constant is unity. The 
unit of time, also a Vanguard unit, is the amount of 
time i t  takes an orbiting satellite a t  a distance of 
one mean equatorial radius from the earth’s center 

to travel one radian. This is 

1 Unit of Time=806.814 mean solar seconds. 

The unit of length, considered one mean equibtoriiil 
radius, is 

1 Unit Length=6,378.165 kilometers. 

CONCLUSION 

The theory described has been adapted to rnake 
optimum use of the capacity and speed of modern 
computing machines. It is a purely numericid 
theory, the accuracy of which is determined only 
by the accuracy of the geodetic parameters, and in 
practicality, by the limitations of series trunc‘ A t‘ ion 
in the machine. The theory described de& only 
with general oblateness perturbations, but is 
easily adaptable to the inclusion of other per- 
turbing forces, including solar rltdiiLtion pressure, 
solar and lunar perturbations, and the effects of the 
tesseral harmonics in the earth’s gravitational 
potential. Though this exposition has dealt only 
with the first three harmonics of the earth’s 
potential function, higher harmonics can be 
easily included. 
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APPENDIX A 
COROLLARY DERIVATIONS 

BASIC EQUATIONS OF AN ELLIPSE 

A basic property of an ellipse is 

(A1 1 
where a is thc sciniinnjor axis, b is the seiniriiinor 
axis, ant1 c is tlie tlistnncc from the center of the 
ellipse to oiic focus. The eccentricity of the ellipse 
is def ind :is t h c  ratio 

a‘ = b2 + c’, 

C p E-. 
a 

If we let the centcr of the ellipse be the center of 
a Cartesian coordinate systetii, and let the 2 axis 
lie along the semimajor axis, we can write the 
equation of the ellipse as 

FIGURE AI.-The geometry of the ellipse 
and we can then solve for y ,  which is the distance 
r sin f (see Figure Al) ,  by the equation We know as well that  

X=U COS E 
y=Jb‘ (i-$)=r sin j .  (A4) or x2=a2 cos2 E ;  
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therefore, we can write 

r sin j = d m  
= b J-E 
= b sin E. 

But from Equations A1 and A2, we have 

b=da2( 1 - e 2 ) ,  
which gives 

1 r s i n j = a m  sin E. I 
Similarly, from Figure A l l  we see that 

r cos j = a  cos E-e; 

but since e=c/a, we can write this 

r cosj=a(cos E-e). 

Now, squaring Equations A6 and A8 and adding 
them together, we have 

r2=a2[(l-e2) sin2 E+cos2 E-2e cos E+e2] 
=a2[l+e2(1-sin2 E)-2e cos E] 
=az[l--2e cos E+e2 cos2E], 

so then 

and 
r2=a2(1-e cos E)2 

Now, we can rewrite Equation A9 as 

a 
r 1=- (1-e cos E). 

When this is multiplied through by e and re- 
arranged, we have 

ea 
r (A10) e - -  (1-e cos E)=O, 

which can be written 

ea 
r e-cos E+cos E--( l -e  cos E)=O. (AlO) 

But we know from Equation A9 that 

a 1 
r 1-e cos E' 

so we can write Equation A l l  as 

a ae ea e2a e-cos E+- cas E--cos2E--+-. cos E=O. r r r r  

From Equation A8 we know that 

a 
r cos .f=- (cos E - e ) ,  

and so we have 

or 
e-cos E+cos j - e  cos E cos j = O .  (A12) 

If we now subtract e from both sides of Equation 
A12, multiply through by e ,  and add 1 to both 
sides, we get 

1 - e  COS E+e cos j - e 2  cos E cos j=  1 -e2,  

(1-e cos E ) ( l + e  cosf)=l-e2. 

Multiplying through by a/(l+e cos j ) ,  we have 

or 

but since the left-hand side of Equation A13 is 
r by Equation A9, we have the ellipse equation 

a (1 - e') 
l + e  c o s j '  1 r= 

I I 

The next equation of interest states that the 
total area swept out per unit time by the radius 
vector of an ellipse is l /h where h=l /~ /a ( l - e2 ) .  

In polar coordinates, the area swept out in time 
dt is 

1 
- r(rd0) 2 



5u TECHNICAL REPORT R-14 7-NATIONAL AERONAUTICS A N D  SPACE ADMINISTRATION 

since the area is that of a triangle. So r2(de/dt) 
is twice the area swept out per unit time. Now, 
the area swept out per unit time is the total area 
divided by the period of one revolution of the 
radius vector. Thus, 

de A 
dt- P 

r2 --2 -. 

But A=mb where a and b are the semimajor and 
semiminor axes, respectively. We know from 
Equation A5 that  b=da2(1-e2), so the area 
becomes 

A = ? r a 2 d m .  

We know also that the period P is Zsln, where n 
is the mean motion (average angular velocity) 
of the radius vector, and from Kepler’s law, 
n,a-3/2 . Therefore, P= 2 ~ / a - ~ J ~  and Equation 
A15 becomes 

which we have defined as l/h. 

h= -. da(  I - e2) 

Thus, 

1 

Proof That +=sin i sin ( u - O )  

In  spherical trigonometry, the law of sines is: 
“In any spherical triangle, the sines of the sides 

Earth’s: 
equatorial 
plane 

Distance VS E v 
Distance XN E u 
Distance NS = ( v  - 0 )  

Center of 
the earth 

\ 

are proportional to the sines of the corresponding 
opposite angles.” The sine of the geocentric 
latitude of a satellite, denoted by J., is defined as 
the sine of the angle between the earth’s equatorial 
plane and the line drawn from the center of the 
earth to the satellite. 

So, in the spherical triangle NQS (Figure A2), 
we have two sides (v -U)  and SQ and two angles 
i and SQN. If we designate the side SQ as a ,  the 
angle which subtends it, we can write the law of 
sines: 

sin SQN sin i 
sin (~-u)-sin a 

But we know that angle SQN is a right angle, 
and we have defined sin a as J., so we have 

--. 

$=sin i sin (v-u). 

DERIVATION OF EQUATIONS OF MOTION IN 
POLAR FORM 

Consider the motion of a particle in motion 
along a smooth path C, as shown. 

Satellite Osculating plane 
\s/ of the wtc’llitr. 

The arc SQ cuts the equatorial plane 
perpendicular to it ,  I,y definition. 

FIGURE AQ.-Hansen’s coordinate system. 



APPENDIX B 
THE COMPUTATIONAL PROCEDURE USED IN THE IBM GOP PROGRAM FOR THE GENERATION OF 

FINAL SERIES FORMS 

The following program was used in the actual 
The format is the same computation of orbits. 

as used in the program. 
1. Store a,, eo, and io. 
2 .  Store truncating values E and E'. 

3. Store limit m to number of iterations. 
4. Storey. 
5. Leave space for CY and 7. 
6. Set up storage for 10 Fourier series: X1, Xz, 

7. Store k, ,  IC3, k,, A / 2 ,  and B j 2 .  
8. Compute i 0 /2 ,  sin ( i o / 2 ) ,  and cos (i0/2).  
9. Store as follows: sin (i0/2)+X1 

o+xz 
O+X3 

cos (i0/2) +A* 
o+w 
o + v  
1 +ho/h 
1 +h/ho 
O+no6z 
O+A. 

eo ~ . 
1+J1-e: 

x3, x4, W, v ,  h/ho, h,/h, no6z, and A. 

10. Compute and store p= 

11. Compute and store the Fourier series 

1 I*=2 (l+J1--e,2) cos [F+(w)]  

1 
2 +- (1-J1-eO2) cos [ F - ( w ) ] - e o  cos ( w ) .  

, 12. Compute and store the Fourier series 

m*=z ( l + d w )  sin [F+(w)] I 

1 
2 -- (1-4iZ3 sin [ ~ - ( w ) ] - - e ,  sin ( w ) .  

13. Compute and store 

-=l-v+vz-v3+. . . +(-l)"vn. 
1 

l + v  

14. Compute and store the Fourier series 

a,- 2 - 
P l / l - - e o z  

n = 1 , 2 , 3 , .  . . 

-- 
~ (;+B cos F+02 cos 2F+ . . . 

+ f i n  cos n ~ ) .  n = 1 , 2 , 3 ,  . . . 

52 

15. Compute the Fourier series product 

+*= 2 2 [ ( x1x4- X&) m * + ( XZX( + X1X3) 1 *I. 
P 

16. Compute +*'. 
17. Compute 

18. Compute the Fourier series (1-3+*'). 

19. Compute the Fourier series (3-5+*')+*. 

20 .  Compute the Fourier series (35+*'-30)+*2+3. 

21. Compute 

" .. 
22.  Compute 

23.  Compute 

24.  Compute 

25. Compiit'e 

26.  Compute 

[(35+*2-30)+*2+3]. 

27 .  Compute f l * = A + B + C .  

28. Compute __ by differentiating the Fourier bfl* 
dF 

series Q*. 

29.  Compute 
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As the particle moves from 0 to P, r goes to r+dr. 
If we let i be a unit vector along r, and i+Ai 
be a unit vector along r+Ar we can draw the fol- 
lowing isoscelcs triangle, since both sides are 
unit vectors: 

We know from the definition of plane trigonom- 

A0 Ai=2 sin -a 2 

etry, 

So we can write 
A0 2 sin - ai 2 

and since 

we see the magnitude of the vect>or dildO=l. 
Also clearly, from the diagram, as AO+O, Ai  
becomes perpendicular to i ;  so in the limit, 

d i  A i  -- lim -=a unit vector perpendicular to i, de-ae+o A0 

which we will designate as j ,  and write 

di -_ de-j- 

Now, the radius vector r=ri, and the velocity vec- 
tor is simply 

d d . dr di 
- (r)=- (n)=- i+r  -. d t  d t  d t  d t  

But since 
d i  di d e .  %=j, di=jde, and -=- J,  d t  d t  

we can write the velocity vector 

dr di dr de 
dt d t  d t  d t  v=- i+r -=- t r  - j. 

Then the acceleration vector a is dvldt, or 

d 2 r .  dr di d2e de d j  
j+r - -e dt2 d t  d t  d t  d t  d t  a=- i+- -+ - -+r 

However, using exactly the same reasoning as 
above, we can show that 

or 
dj-  d e .  -&--s 1. 

So, substituting this expression for djjldt in the a 
equation and replacing dildt  with (de/dt)j, then 
rearranging, we have: 

de de 
d2e)  d t  d t  

a = - i + - - j +  d2r dr d e .  d r d e  --+r- j - r - - - i  
dt2  d t  dt ( d t  d t  d t2  

or 

However, 
a= [ ~ - r ( i > 2 1 i + [ ~ ; i + r i ]  j .  

[2iB'+rB]=2 dr - de -+r d2e 
d t  d t  d t  

so we can write 

where i and j are unit vectors along the radius 
and perpendicular to the radius vector, respec- 
tively. Therefore the component, of the accelera- 
tion along r is 

I 

r - re2, 

and the component of the acceleration perpen- 
dicular to the radius vector is 
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30. Compute 37. Take the W Fourier series stored, and com- 
aw pute -- bF 

38. Compute 

31. Find 
bD bD* 
br dP 

r -=p - 

where the bar operation means that all F's 
in the argument of the Fourier series 
become E's. 

32. Find 
a D  bn* 
w-w* 
bD b0* 
bE- bF 

---. 
33. Find 

---. 
- 

34. Find l=F and m=m*. 

35. Compute M', 

36. Compute N', 

N'=[(:>'-&~+;] 2eo  sin E-(:J eo  sin F 

39. Compute 

40. Compute 

41. Compute 

Sz=- s. Jl-eo" 
42. Find the coefficients a, and az of the sin F 

terms in Sl and Sz, respectively. 
- 

43. Solve for y in the equation 

44. Construct 

E- dW- Sl + y s2. 

45. Compute 

cos i= -Xx12-Xx22+X32+X:. 

46. Compute 

T=( x2) cos i (-) h - bD A.  
2 J1-eo ho w 

47. Compute 

Tz= T(-AX,l-XX,m). 

48. Compute 
T3= T(Xzl+Xlm). 

49. Find the constant terms in the Fourier series 
for X1, Tz, T3, and X4 and call them b,, bz, b3, 
ctnd b4, respectively. 

50. Compute 
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51. Compute 

2=?x4+T3 ,  

where the tilde indicates that the constant 
of integration has not yet been added. 
We have the equivalence: 

55. Find H and G, which are the constant parts 
of 77 and V, respectively. 

A B 
2 2 56. Compute - and - by iteration, where 

and 

57. Compute 

xl= ( i f f ) -  sin 0+--+- +A, .  

58. Compute 

x 4 =  ( cos '+--- i f f ) -  +A,. 

59. Store XI and X4 found in steps 57 and 58, along 
with x2 and x3 found in step 52, as the new 
X's to be used in the next complete iteration. 

60. Compute $= Jg (constant of integration 

not yet included). 

61. Operate to get $. 
62. Compute 

63. Compute 

'@@=[A] [(%+v2)(1-eo cos E )  
- dE l+w 

-___ ' (l-vz)(l-eo cos E)Z 4- 
64. Find the coefficients CY and /3 of the cos (0) and 

d n d z  cos (E)  terms, respectively, in __. dE 
65. Compute 

-2/3--2e,a 
A G =  2--eo2 ' 

66. Compute W=%+(ACo+ACl cos F)-store as 

67. Compare CY and /3 with E, and if ICY I  >E or 1/31 >E, 

return to step 61 and use the W computed in 
step 66 for the W seen in step 61. 

new W. 

* 

68. Compute no&?= sd:g __ where no constant of 

integration is added. 

69. Compute E ,  by splitting I.t' series to get X ,  
that  part of TI' which contains terms inde- 
pendent of F, that is, select and collect all 
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Fourier series terms whose coefficients of F 
in the argument are zero. 

70. Compute Y, by writing W=E+T cos F 
+$ sin F, then letting F=O, and subtracting 
X contained in step 69. 

71. Form Z+eoT. 

72. Compute A by iteration: 

o r ) + ?  (A2-A3+A4-A3+ . . .). 1 A=--(-+e 
3 &  

h 1 
ho 2 

73. Compute -=1+- (A+,"+eoT)--store as new 

ho 
h 
-. 

74. Compute --=l+A-store ho as new ho -. h h 

75. Compute 

76. Compute v by iteration, where 

by replacing 3"s in step 66 by E's. 

1 
2 v=A-- (A+m)(l+v)-store as new V. 

77. Compare 

J Y n + 1 - Y n J  with E, 

117,+1-171 with € 1  

lan+l-~,I with E, 

and if any is greater, return to step 13 for 
next iteration. 
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